

Commander core
CMD-4CR

Advanced 4-Axis
Motion Controller Core

2 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

COPYRIGHT© 2019 NIPPON PULSE AMERICA, INC.

ALL RIGHTS RESERVED

First edition, October 2019

NIPPON PULSE AMERICA, INC. copyrights this document. You may not reproduce or translate into any language in
any form any part of this publication without written permission from NIPPON PULSE AMERICA, INC.

NIPPON PULSE AMERICA, INC. makes no representations or warranties regarding the content of this document.
We reserve the right to revise this document any time without notice and obligation.

Revision History

Date and
Revision

Firmware
Compatibility

Changes Made

October 2019
Version 1.0

V126BL New Document

Cautions

Copying all or any part of this manual without written approval is prohibited.

The specifications of this controller may be changed to improve performance or quality without prior notice.

Although this manual was produced with the utmost care, if you find any points that are unclear, wrong, or have
inadequate descriptions, please let us know.

We are not responsible for any results that occur from using this controller, regardless of item (3) above.

The Commander core is designed for use in commercial apparatus (office machines, communication equipment,
measuring equipment, and household appliances). If you use it in any device that may require high quality and
reliability, or where faults or malfunctions may directly affect human survival or injure humans, such as in nuclear
power control devices, aviation devices or spacecraft, traffic signals, fire control, or various types of safety devices,
we will not be liable for any problem that occurs, even if it was directly caused by the Commander core. Customers
must provide their own safety measures to ensure appropriate performance in all circumstances.

Explanation of the descriptions in this manual

The "X" "Y" "Z" and "U" of terminal names and bit names refer to the X-axis, Y-axis, Z-axis, and U-axis, respectively.

Terminals with a / (ex. /RST) are negative logic. Their logic cannot be changed. Terminals without a / are positive
logic. Their output logic can be changed.

When describing the bits in registers, "n" refers to the bit position. A "0" means that the bit is in position 0 and
that it is prohibited to write to any bit other than "0." Finally, this bit will always return a "0" when readout.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 3

1.0 Introduction and Overview ... 8

1.1 Product Overview .. 9

1.2 Specifications ... 11

2.0 Operating principle ... 12

2.1 General Connections and Setup ... 13

2.1.1 Connecting multiple Commander cores in a system .. 13

2.1.1.1 Identification Number ... 13

2.1.1.2 Synchronization with external trigger ... 14

2.1.2 Motor interface .. 14

2.1.2.1 Stepper .. 14

2.1.2.2 Digital Servo ... 15

2.1.2.3 Encoder Inputs ... 15

2.1.3 External Connections ... 17

2.1.3.1 Dedicated Input/Outputs... 17

2.1.3.1.1 Mechanical input signals .. 17

2.1.3.1.1.1 Limit Switches ... 17

2.1.3.1.1.2 Slowdown switches ... 18

2.1.3.1.1.3 Home switch ... 19

2.1.3.1.2 Emergency stop .. 19

2.1.3.1.3 External Start .. 19

2.1.3.1.4 Manual pulse generator (MPG) inputs ... 19

2.1.3.2 High-speed Inputs/Outputs ... 21

2.1.3.2.1 High-Speed Digital Inputs ... 21

2.1.3.2.2 High-Speed Digital Output.. 22

2.1.3.3 General-purpose input/output .. 24

2.1.3.3.1 Configurable Digital I/O .. 25

2.1.3.3.2 Analog Input/output .. 25

2.1.3.3.3 Pulse-width modulated Outputs. ... 26

2.1.4 Motion Profile .. 27

2.1.5 Power-on settings .. 28

2.1.6 System settings .. 28

2.1.6.1 ERC (deflection counter clear) ... 28

2.1.6.2 INP (in-position) .. 29

2.1.6.3 Input modes and the polarity of the input/output logic ... 29

2.1.7 Flash Memory ... 31

2.2 Single-axis and Multi-axis operations .. 31

4 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2.2.1 Motor Power .. 31

2.2.2 Jog operation .. 32

2.2.3 Stopping ... 33

2.2.4 Positioning operation ... 33

2.2.4.1 Absolute or Incremental .. 33

2.2.4.2 Individual Position Moves .. 34

2.2.5 Homing operation .. 34

2.2.5.1 Z-move Operation .. 35

2.3 Interpolation Operation ... 36

2.3.1 Linear interpolation .. 36

2.3.2 Circular interpolation ... 37

2.3.2.1 Arc interpolation .. 38

2.3.3 Helical or Tangential interpolation ... 39

2.3.4 Buffered interpolation operation ... 40

2.4 On-the-fly-speed/target position change .. 42

2.4.1 On-the-fly speed change .. 42

2.4.2 On-the-fly target position change (Target position change) .. 43

2.5 Advanced Functions ... 44

2.5.1 Joystick operation .. 44

2.5.1.1 Direction control .. 44

2.5.1.2 Speed control ... 45

2.5.1.3 Position control.. 45

2.5.2 Manual pulse generator (MPG) operation ... 46

2.5.2.1 MPG signal input mode ... 46

2.5.2.2 Electronic gearing the MPG signal ... 47

2.5.3 StepNLoop Closed Loop Control operation .. 49

2.6 Status monitoring function .. 52

2.6.1 Counter values ... 52

2.6.1.1 Output Pulse Counter .. 52

2.6.1.2 Feedback Pulse Counter .. 52

2.6.1.3 Deviation Counter .. 52

2.6.2 Axis status register ... 52

2.6.2.1 Axis Status Acquisition Command ... 53

2.6.2.2 Pulse Speed register .. 53

2.6.2.3 Error clear command ... 54

2.7 Standalone program Specification ... 55

2.7.1 Program Development ... 55

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 5

2.7.2 Conditional loop control ... 55

2.7.3 Multi-thread ... 55

2.7.4 Subroutines ... 55

2.7.5 Error Handling ... 56

2.7.6 Standalone Variables .. 56

2.7.7 Compiling, Saving, Downloading .. 56

2.7.8 Standalone Control ... 57

2.7.9 Standalone Status ... 57

2.7.10 Standalone Run on Boot-Up ... 57

3.0 Communication Interface ... 58

3.1 USB Communication .. 58

3.1.1 Typical USB Setup ... 58

3.1.2 HID Communication API ... 59

3.1.2.1 How to use ... 59

3.1.2.2 GetCommanderHIDnumber... 60

3.1.2.3 GetCommanderHIDName .. 61

3.1.2.4 OpenCommanderHID .. 62

3.1.2.5 CloseCommanderHID .. 63

3.1.2.6 SendReceiveCommanderHID ... 64

3.1.2.7 Communication Error Codes .. 65

3.2 Serial Communication .. 66

3.2.1 Communication Port Settings .. 66

3.2.2 ASCII Protocol ... 66

3.3 Identification Number .. 67

3.4 Windows GUI ... 67

4.0 ASCII Language Specification .. 68

4.1 ASCII Command Set .. 68

4.2 Error Codes .. 75

4.3 Examples of command control from a PC .. 76

4.3.1 Start and stop of jog move ... 76

4.3.2 Position Move .. 77

4.3.3 Obtaining and clearing the counter value .. 78

4.3.4 Homing Operation .. 79

4.3.5 Linear interpolation operation ... 80

4.3.6 Circular Interpolation Operation .. 81

4.3.7 On-the-fly speed change .. 82

6 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

4.3.8 Synchronization Function ... 83

4.3.9 Control of general purpose input/output .. 84

5.0 Standalone Language Specification .. 85

5.1 Using A-Script programming interface ... 85

5.1.1 Program Development ... 85

5.1.2 Subroutines .. 85

5.1.3 Error Handling .. 85

5.1.4 Multi-thread ... 85

5.1.5 Compiling, Saving, Downloading .. 85

5.2 Standalone Command Set .. 86

5.3 Error Codes .. 90

5.4 Example Standalone Programs .. 91

5.4.1 Standalone Example Program 1 – Single Thread .. 91

5.4.2 Standalone Example Program 2 – Single Thread with buffer ... 91

5.4.3 Standalone Example Program 3 – Single Thread .. 92

5.4.4 Standalone Example Program 4 – Single Thread .. 92

5.4.5 Standalone Example Program 5 – Single Thread .. 93

5.4.6 Standalone Example Program 6 – Single Thread with subroutine ... 93

5.4.7 Standalone Example Program 7 – Single Thread with error handling.. 94

5.4.8 Standalone Example Program 8 – Multi-thread ... 95

5.4.9 Standalone Example Program 9 – Multi-thread with subroutine .. 96

5.4.10 Standalone Example Program 10 – Multi-thread with subroutine .. 97

6.0 Dimensions and Connectivity ... 99

6.1 Dimensions ... 99

6.2 Connectivity ... 100

6.2.1 Pinout ... 100

6.1.1.1 Pin Assignment Diagram .. 101

6.1.1.2 Pin Descriptions by Functions .. 102

6.1.1.3 Recommended Footprint... 107

6.2.2 Interface Boards ... 107

6.1.2.1 Development Kit .. 107

7.0 Electrical Characteristics ... 108

7.1 Electrical and Thermal Specifications .. 108

7.2 Handling Precautions ... 109

7.2.1 Design precautions ... 109

7.2.2 Precautions for transporting and storing Commander cores ... 109

7.2.3 Precautions for installation .. 110

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 7

7.2.4 Other precautions .. 110

Appendix A: Homing Mode Actions ... 111

A.1 Homing Mode 0 ... 112

A.2 Homing Mode 1 ... 114

A.3 Homing Mode 2 ... 115

A.4 Homing Mode 3 ... 116

A.5 Homing Mode 4 ... 117

A.6 Homing Mode 5 ... 118

A.7 Homing Mode 6 ... 119

A.8 Homing Mode 7 ... 120

A.9 Homing Mode 8 .. 121

A.10 Homing Mode 9 ... 122

A.11 Homing Mode 10 ... 123

A.12 Homing Mode 11 ... 124

A.13 Homing Mode 12 ... 125

Appendix B: Speed Settings ... 126

B.1 Acceleration/Deceleration Range .. 126

B.2 Acceleration/Deceleration Range – Positional Move .. 127

Appendix C - Interpolation... 128

C.1 Linear Interpolation ... 128

C.3 Arc Interpolation .. 128

C.4 Circular Interpolation ... 128

C.5 Circular Interpolation Synchronized with the U-axis .. 129

Additional notes regarding Interpolation functions... 129

8 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

1.0 Introduction and Overview
Commander motion controller core (CMD-4CR) is a first in class advanced 4 axes, standalone-programmable
motion controller hybrid IC. The Commander core design provides OEMs the convenience of an off-the-shelf
controller and the technology of a designed-from-scratch controller. As such it exhibits the best qualities of both
types of controllers:

• Faster path-to-market

• Flexible design that fits a large range of applications

• No sacrifice to controller capabilities and processing speed

• Easily scalable from prototype to production with no software changes required

• Simple to use

• Cost-effective

The Commander core architecture allows for easy integration into custom hardware. Communication to the
Commander core can be established over USB, Serial (RS-485, I2C, SPI) or Ethernet. It is possible to download four
standalone programs to the device and have it run independently of a host.

The Commander core is a CMOS hybrid IC designed to provide the oscillating, high-speed pulses needed to drive
stepper motors and digital servomotors (pulse string input types) using various commands. It can offer various
types of control over the pulse strings and therefore the motor performance. These include continuous feeding,
positioning, and origin return, at a constant speed, and linear or S-curve acceleration/deceleration.

The Commander core controls four axes. It can control the linear interpolation of two to four axes, circular
interpolation between any two axes, confirm controller operation status, and output an interrupt with various
conditions. It also integrates an interface for servo motor drivers.

These functions can be used with simple commands. The intelligent design philosophy reduces the burden on the
CPU. Commander is a robust and powerful controller with numerous operating capabilities. This table summarizes
a variety of capabilities and features available in the Commander core software:

Feature Description

Standalone control separated from PC Operate motion without PC using standalone functionality

Programming language for stand-alone program
with utility software

A-Script programming language, develop program on PC,
compile and download to Commander

Operation check by utility software
Easy to use monitoring screens for motor status, I/O
status, and system operation status

Compile, write and read standalone program by
utility software

Easy to use tools to write, edit and debug software

Joystick operation with analog input (X-axis, Y-axis) Utilize joystick for manual control of motion

13 types of homing mode
Flexibility in how machine mechanisms are set-up and
homing operation is initiated

Manual pulse generator operation

On-the-fly speed change (speed overridden during
movement)

Quickly change operation speed manually on-the-fly

On-the-fly target position change (target position
overridden during movement).

Target position can be updated manually on-the-fly

2 to 4-axis linear interpolation Create a variety of paths utilizing interpolation options

2-axis circular and arc interpolation, including 3rd
axis for Helical motion

Create circles, arcs or even create helical motion utilizing x,
y, z axis

Sync output configuration

Absolute positioning or incremental positioning can
be selected

Flexibility of positioning coordinates as absolute from a
home location or incremental

12 inputs and 12 outputs of general-purpose
input/output signals

Flexibility in outputs, including configuration of general-
purpose I/O, dedicated I/O and high-speed inputs

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 9

1.1 Product Overview

The Commander core is based on the PCL6045BL motion control LSI, and an ARM Core processor.

Power

- +3.3VDC Power Input

- 3.3V logic level, 5V tolerant

Communication

- USB 2.0, HID compatible. No driver signature required

- RS-485 ASCII, selectable 9600, 19200, 38400, 57600, 115200 baud rates available

- I2C bus [1 channel], available for future expansion for interface with external IC

- SPI bus [2 channels], available for future expansion for interface with external IC

- Ethernet, available for future expansion

Control

- Command control from PC through USB or serial communication

- Standalone control allows operation separated from PC, using a BASIC-like programming language known

as A-SCRIPT

Utility software

- Allows for operation check by utility software

- Compile, write and read standalone programs

Motor interface

- Maximum pulse output rate of 6.55M PPS

- Stepper motor interface with pulse, direction, and enable outputs for XYZU

- Servo motor interface with pulse, direction, enable, in-position, servo alarm, and error clear outputs for

XYZU

Homing Routines

- 13 different built-in homing routine available

Positioning operations

- Selectable trapezoidal or s-curve acceleration

- Absolute positioning or incremental positioning can be selected

- On-the-fly speed change (speed overridden during movement).

- On-the-fly target position change (target position overridden during movement).

- Coordinated motion

• Linear (XYZU) (2 to 4 axis)

• Circular/Arc (any two axes)

• Helix/Tangential (XYZ)

• Continuous linear/circular/arc coordinated buffered move for XYZ axis

- Control using manual pulse generator (MPG)

• Electronic camming

• Electronic gearing

10 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Inputs/Outputs

- With integrated noise filter, to reduce switch bounce

- A/B/Z encoder inputs for XYZU (TTL Compatible)

• Maximum frequency of 6.5 MHz (26M counts with 4x Multiplication)

• StepNLoop closed-loop position verification algorithm (XYZU)

- Manual pulse generator (MPG) operation

• A/B pulse inputs for XYZU (TTL Compatible)

• Maximum frequency of 6.5 MHz (26M counts with 4x Multiplication)

- Digital I/O

• 4 designated highspeed inputs

• 4 designated highspeed outputs

• +Limit/-Limit/Home inputs for XYZU

• Simultaneous start input

• Emergency stop input

• 32 configurable I/O

• Latching input

• Synchronization Pulse output

- Analog I/O

• Two 10-bit analog input

• Two PWM outputs

• Joystick operation with analog input (X-axis, Y-axis)

Firmware upgrade and download via Boot-loader through USB

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 11

1.2 Specifications

Item Description

Number of Axes 4 axes (X, Y, Z, and U axis)

Positioning control range -134,217,728 to +134,217,727 (28-bit)

Ramping-down point setting
range

0 to 16,777,215 (24-bit)

Number of registers used for
setting speeds

Three for each axis (FL, FH, and FA (speed correction))

Speed setting step range 1 to 65,535 (16-bits)

Speed magnification range1 Multiply by 0.1 to 100
Multiply by 0.1 = 0.1 to 6,553.5 pps
Multiply by 1 = 1 to 65,535 pps
Multiply by 100 = 100 to 6,553,500 pps

Acceleration/deceleration
characteristics

Selectable as Linear or S-curve acceleration/deceleration.

Acceleration rate setting range 1 to 65,535 (16-bit)

Deceleration rate setting range 1 to 65,535 (16-bit)

Feed speed automatic
correction function

Automatically lowers the feed speed for short distance positioning moves.

Manual operation input Manual pulse generator (MPG) input, pushbutton switch input

Interpolation functions Linear interpolation: Any 2 to 4 axes, Circular interpolation: Any 2 axes

Operating temperature range -40 to +85°C

Power Single power supply of 3.3 V±10%

Package 150-pin Hybrid IC

1 See Appendix B: Speed Settings

12 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2.0 Operating principle
The Commander core has many modes of operation. These include single, multi-axis, interpolation, on-the-fly
speed or target position changes, status monitoring functions, and I/O operations. Any or all of the different
modes of operation can occur simultaneously without affecting the performance of the other operations.

Single-axis operations involve motion of a single axis and does not require interaction with any other axes. Multi-
axis operations involve motion of two or more axes but does not require interaction between the axes.
Interpolated operations involve two or more axes whose movements are interdependent. There are several types
of interpolated moves. Linear interpolation is when two or more axes work together to move along the
hypotenuse between the starting and target coordinates. For linear interpolation, each axis moves in only one
direction and start and stop at the same time. Circular interpolation includes two-axes working together to move
along the outer rim of a circle. For circular interpolation, each axis will change direction and speed as required to
allow for a circular path of motion. A popular subset of circular interpolation is arc interpolation where two axes
work together to move along the outer rim of a circle for a set number of degrees. Helical or tangential
interpolation is when circular or arc interpolation of the X and Y-axis is combined with linear interpolation of the
center point of the circle and the Z-axis. This allows for movement along a helical motion path.

The Commander core allows for all of these different moves:

• as independent moves

• any combination of the above moves

• or buffered together to allow for seamless continuous interpolated motion.

When operating a motor, it is possible to jog a motor at speed until it is told to stop or move to a predefined target
position. The target position can be absolute to a 0 (home) point defined during one of the many homing
processes or can be incremental or relative to the motor’s current position. While moving it may be necessary to
change the target speed, or while making a positioning move, it may be necessary to change target position. The
Commander core can seamlessly do this without requiring any of the motors to stop. These operations are
referred to as on-the-fly speed change or on-the-fly target position change respectively. It is also possible to use
a joystick or analog input to control a motor. Using the MPG function, the motor can follow a master axis or a
cam.

Regardless of the type of operation, the first step is to define your motion profile. The basics of a motion profile
are: acceleration/deceleration type (S-curve or Linear/trapezoidal), the initial or low speed, the max or high
speed, and the amount of time needed for acceleration and deceleration.

There are a number of inputs and outputs available on the Commander core. These can be broken up into two

categories; dedicated high-speed (S) and general-purpose. Dedicated inputs/outputs do not require further
interaction from the microprocessor, and usually fall into one of two categories: 1) Inputs/Outputs that
automatically cause a reaction that is fixed, and 2) Inputs/Outputs that automatically cause a reaction that can be
configured. Safety inputs such as end limits, slowdown (near the limit) inputs, home (origin) switch, latching
inputs, and synchronization outputs are all dedicated inputs. On the other hand, the general-purpose outputs will
change state and require the microprocessor to detect and then act on their status. In addition, the
microprocessor can request the current status of any input and of the various counters, output pulse, encoder,
MPG, etc. along with the full status of each axis.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 13

2.1 General Connections and Setup

Important Note: All the commands described in this section are ASCII commands unless called out as standalone
commands. ASCII commands are used when communicating over USB or serial. Standalone commands are used
when writing a standalone program to the Commander core. Not every ASCII command is supported in standalone
operations.

2.1.1 Connecting multiple Commander cores in a system

2.1.1.1 Identification Number

The Commander core allows for each device to have a unique identification number, allowing up to 64 devices to
be connected to the same host. If multiple devices are connected to the host, the identification number for each
device should be unique.

By default, all Commander cores are shipped from the factory with identification number 01. The current
identification number of a device can be found by reading the ID command. Also, the device name will always
include the current identification number. For USB communication the device name will be "CMD-4CR-xx" where
xx is the identification number of the device. For serial communication, the “DeviceName” is only the identification
number of the device.

In order to change the identification number of the device, first store the desired number using the ID command.
Note that this value must be within the range [00-99].

For example, the command ID=02 can be sent to change the identification number to 02. To save a modified
identification number to the flash memory of the device, use the STORE command. The new identification number
will not take effect until after a power cycle.

The current version of firmware can be found with the VER command.

ASCII ID STORE VER

Standalone ⎯ STORE ⎯

14 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2.1.1.2 Synchronization with external trigger

It is possible to use an external trigger to
start a defined motion profile. This is
done by connecting the /CSTA pins as
shown in Figure 2-1. The /CSTA line
needs an external pullup resistor to VDD.

By default, the external start input is
disabled (EXST=0), which will allow
motion to start immediately upon receipt
of any motion command. If the external start input is enabled (EXST=1) than any motion command sent will wait
for the /CSTA input to go low, before motion is started. The Commander core can buffer up to 3 motions on a
first-in first-out order; they will start one at a time each time the /CSTA input goes low.

The logical input of the /CSTA input cannot be changed.

ASCII EXST

Standalone ⎯

2.1.2 Motor interface

The Commander core is designed to be a master controller for both stepper and digital servomotors and their
drivers. There are a few differences between how a stepper and a servo system react and the connections needed
between the Commander core and their respective drivers.

The difference between a stepper motor and a
servomotor configuration is shown below. The design
and construction of the motors are also different.
Stepper motor operation is synchronized by command
pulse signals output from a pulse generator (strictly
speaking it follows the pulses). In contrast, a
servomotor will translate the command pulse signals
into speed, direction, and distance commands (usually
one pulse equals one encoder pulse) as such the
servomotor operation lags behind the command
pulses.

2.1.2.1 Stepper

Since a stepper motor operation is synchronized by
command pulse signals output from the Commander
core (strictly speaking it follows the pulses), the
stepper driver will need the pulse (speed command),
direction (direction command), and enable connected.
An encoder connection is not required unless you will
be using the StepNLoop function, however, there are
advantages available if an encoder is connected.

The pulse (PUL) and direction (DIR) communicate the
speed and direction in real-time to the drive. The
polarity and output mode of these signals is set with
the POL[axis](Bit0~2).

The enable (EO) output is most often used to turn the
motor excitation circuit ON/OFF. But if not required by
your driver or application, it can be used as a general-

Figure 2-1

Figure 2-2

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 15

purpose output. The polarity of this output is set with the POL[axis](Bit9).

Figure 2-2 shows connection examples for both open loop and closed loop stepper systems.

ASCII POL[axis] EO

Standalone ⎯ EO

2.1.2.2 Digital Servo

The servomotor rotation lags behind the command pulses from the Commander core. This means that when the
Commander core completes outputting pulses, the encoder will take some time to return all of the pulses. As such
there is a need for more communication between the Commander core and the servo drive. A servomotor driver
will need the pulse (speed command), direction (direction command), enable, INP (in-position), ERC (deflection
counter clear) and ALM (alarm) connected. It is also strongly recommended to connect the encoder output to the
Commander core.

The servomotor driver will send:

An INP (in-position) signal is sent from the driver when the motor has reached the requested position based on the
pulses sent. The polarity of this input is set with the POL[axis](Bit7). When the INP[axis] function is enabled the
operation completion status is delayed until the in-position signal is received from the driver.

An ALM (alarm) signal is received when there is an error or abnormality in the servo driver or motor. This can
include:

(1) The deflection amount becomes abnormally large.

(2) Excess current is flowing through the motor (instantaneous measurement, or at certain intervals)

(3) There is a temperature error.

(4) There is a power supply voltage error.

The alarm signal associated with each error varies with the servo driver. Generally, the signal from a servo driver is
kept ON until it is cleared. The polarity of this input is set with the POL[axis](Bit5).

As such the ERC command can be setup so the Commander core can send an ERC (deflection counter clear) signal
to clear the error. The polarity of this output is set with the POL[axis](Bit8), while the pulse width is set with the
ERCP command and delay is set with the ERCD command.

Figure 2-2 shows connection examples for a servomotor driver.

ASCII POL[axis] EO INP[axis] ERC[axis] ERCD[axis] ERCP[axis]

Standalone ⎯ EO ⎯ ⎯ ⎯ ⎯

2.1.2.3 Encoder Inputs

An encoder is a type of pulse generator that can be used to communicate to the Commander core the actual
speed, direction, and position of the motor or system it is attached to. The Commander core accepts two different
pulse types which are set using the POL[axis](Bit11~12).

1) Two pulse type (not common) is where pulses are

sent to A input to count up and B input to count

down. Each pulse input is one count of the

encoder.

a. This can be used as an up/down counter

to track pulses unrelated to the motion of

the motor.

Figure 2-3

16 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2) A/B phase type (common).

a. For an A/B phase type there should be

90° difference between the pulses from A

and B. See Figure 2-4.

b. By default, when the A phase leads the B

phase motion is in the positive direction,

when B phase leads the A phase motion is

in the negative direction. The direction

can be changed by POL[axis](Bit10). See

Figure 2-5.

c. For an A/B phase type you can select x1,

x2 or x4 multiplication rate. Figure 2-6

shows how the encoder counts would be

interpolated for a x1, x2, and x4

multiplication rate on a single encoder.

i. x1 multiplication – Only the

rising edge of the A phase is

counted, B phase is not counted

and only used to check the

direction of motion.

ii. x2 multiplication – The rising

and falling edge of the A phase

is counted, B phase is not

counted and only used to

check the direction of motion.

iii. x4 multiplication – The rising and falling edge of the A and B phase is counted, and used

to check the direction of motion.

Maximum frequency input on the encoder line is the maximum pulses that can be input to an encoder input, not
the counts. Since most encoders outputs are rated based on a x4 multiplication rate, the output frequency of
pulses is most likely ¼ the published count rate output of the encoder. Please check the datasheet for your
encoder to confirm.

While an encoder input is not required, there are a number of advantages to connecting one.

1) Closed loop control using StepNLoop – StepNLoop is a closed-loop position verification algorithm. When

the encoder is placed at the work point, it can be used to eliminate backlash in the system. When the

encoder is mounted to the motor, it can help overcome missed steps. Section 2.5.3 StepNLoop Closed

Loop Control operation contains more information regarding StepNLoop.

2) Motor Stall detect – When an encoder is connected it is easy to detect if the motor has stalled.

3) Position verification – Verify the motor has finished it move and reached the desired position.

4) Z-index – the Z-index can improve your homing method. The polarity of Z-index input is set with the

POL[axis](Bit13)

If an encoder is not connected or needed, the encoder inputs can be used as an up/down counter to track pulses
unrelated to the motion of the motor.

ASCII POL[axis]

Standalone ⎯

Figure 2-5

Figure 2-6

Figure 2-4

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 17

2.1.3 External Connections

The Commander core includes several types of inputs/and outputs which are not directly related to the motion of
the motor. Digital I/O is broken down into three categories: 1) Dedicated I/O - high speed inputs or outputs which
have a dedicated function which cannot be changed; 2) high speed I/O - high speed inputs or outputs with
processing times of <200ns that have certain functions associated to them, but can also be used as general
purpose inputs or outputs; and 3) general purpose I/O, which have no built-in associated functions and are
defined by the user.

There are also two analog inputs and two PWM outputs.

2.1.3.1 Dedicated Input/Outputs

The Commander core includes a number of inputs and outputs that have dedicated functions. These include
safety-related functions such as emergency stop and limit switches, informational inputs such as slowdown and
home, and functional inputs such as external start and (MPG) pulsar inputs.

2.1.3.1.1 Mechanical input signals

The following four signals can be input for each axis:

1) +L (Limit +) When this signal turns ON while operating in the positive direction, the motor stops

immediately, or decelerates and stops.

2) -L (Limit -) When this signal turns ON while operating in the negative direction, the motor stops

immediately, or decelerates and stops.

3) SD (Slowdown) Used as a deceleration signal or a deceleration stop signal by a software setting.

4) H (Home) Input signal for a Homing operation.

The input logic for these signals can be changed with software.

Figure 2-7

2.1.3.1.1.1 Limit Switches

Limit switches, most commonly seen in linear mechanisms to restrict motion to a safe range, are used to identify
that the motor has reached its end of travel. If either the positive (L+) or negative (L-) signal becomes active, the
Commander core is instructed to immediately stop all advancement in that direction but will allow movement in
the opposite direction. As such it is important to ensure the placement of the positive limit at the end of positive
travel and negative limit at the end of negative travel. The polarity of limit inputs is set with the POL[axis](Bit3).

When designing your limit circuit, here are a few points to keep in mind:

1) It is especially important that the motor must stop when the signal is active.

2) To prevent nuisance limit faults that can stop your system, ensure that electrical noise does not trigger

your limits as active.

3) To operate in a fail-safe manner, the signal line must be designed to trigger as active when the cable

connecting the limit switch to the Commander core becomes disconnected.

With the above points in mind think about your limit circuit and the active logic level in your system.

18 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Limit error

By default IERR=0, which will trigger a limit error MST[axis](bit8~9) when a limit switch is set to active. Once the
limit error is set, use the CLR[axis] command to clear the error in ASCII mode or the ECLEAR[axis] command in
standalone mode.

When using the end limit during the homing modes, the ERC (deflection counter clear) signal can be setup to clear
the limit errors that accrue due to homing automatically.

The limit error states can be ignored by setting IERR=1. In this case, the motor will still stop when the appropriate
switch is triggered; however, it will not enter an error state.

ASCII CLR IERR ERC[axis] MST[axis]

Standalone ECLEAR[axis] ⎯ ⎯ MST[axis]

2.1.3.1.1.2 Slowdown switches

The slowdown switch (SD) input indicates a point to begin deceleration. If the slowdown switch inputs are active
when the motor is operating at HSPD speed and this signal is triggered, the motor will start to decelerate.

The 2-bit SDE[axis] command enables the SD inputs and sets the latching function. By default, SDEX=0 disables the
X-axis SD inputs. The inputs can be enabled without a latch function using SDEX=1, or enabled with a latch
function SDEX=3.

Bit Description Setting

0 SD input 0 - Disabled 1 - Enabled

1 SD latching 0 - Disabled 1 - Enabled

Table 2-1 SDE command

The SDC[axis] command determines the specific operation of the SD input. By default, SDC[axis]=0 sets the
operation, when triggered, to decelerate the motor to LSPD without stopping. When SDC[axis]=1, the operation is
set to decelerate and stop when the SD input is triggered.

Value Description

0 Decelerate only

1 Decelerate and stop

Table 2-2 SDC command

Triggering the SD input when SDC=1 will set the SD stop flag, MST[axis](bit17). The SD stop flag will not prevent
further motion, but can only be cleared by using the CLR[axis] command in ASCII mode or the ECLEAR[axis]
command in standalone mode.

The SD input, when triggered, will cause the motor to slowdown regardless of the direction of travel.

Figure 2-7 shows an example of a setup using the slowdown inputs. These inputs are mainly used in homing
operations. In this case the axis would move at HSPD, trigger the slowdown input, allowing the motor to
decelerate to LSPD, before it triggers the home input.

Other uses for the slowdown input are placing SD limits at each end of travel just before the end limits. This allows
for two options. The slowdown inputs function as a soft limit (SDC=1) that decelerates and stops the motion,
allowing the end limits to operate as emergency hard end limits. Or they can just allow the motor to decelerate
(SDC=0) to LSPD before triggering the end limits. The polarity of the slowdown inputs is set with the
POL[axis](Bit6).

ASCII SDE SDC POL[axis] CLR MST[axis]

Standalone ⎯ ⎯ ⎯ ECLEAR[axis] MST[axis]

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 19

2.1.3.1.1.3 Home switch

The Home (H) switch is used during some homing modes to aid in the detection and location of the zero-position
used in absolute positioning operations. For more information see homing operation in section 2.2.5 Homing
operation and Appendix A: Homing Mode Actions. The polarity of the home input is set with the POL[axis](Bit4).

2.1.3.1.2 Emergency stop

The Commander core has an emergency stop (/CEMG) input for dedicated use as an emergency stop signal. When
in operation, if the /CEMG input goes low or the ESTOP command is sent, all axes will stop immediately. No axis
can operate while the /CEMG signal is low.

The logical input of the /CEMG input cannot be changed.

Note: In a normal stop operation, the final pulse width is normal. However, in an emergency stop operation, the
final pulse width may not be normal. As such the motor drivers may not recognize the last pulses, and therefore
the Commander core internal counter may not match the mechanical position. Therefore, after an emergency
stop, it is recommended that you perform a homing operation to match the command and mechanical positions.

Emergency stop error

No axis can operate while the /CEMG signal is low.

By default when IERR=0, any axis that is operating when the /CEMG signal goes low or the ESTOP command is sent
will set an EMG error flag MST[axis](bit16) for that axis. In addition, any axis that tries to start operating while the
/CEMG signal is low will set an EMG error flag for that axis. Any axis with a set EMG error flag cannot operate until
the EMG error flag has been cleared. However, if an axis was not moving when the /CEMG or ESTOP was
triggered, the EMG error flag will not be set for that axis, and thus that axis can operate immediately after the
/CEMG input is cleared.

To clear the EMG error flag, use the CLR[axis] command in ASCII mode or the ECLEAR[axis] command in
standalone mode.

The EMG error flags are ignored by setting IERR=1. In this case, all axes will still stop when /CEMG is triggered or
ESTOP command is sent; and all axes can operate again immediately after the /CEMG input is cleared.

ASCII ESTOP MST[axis] CLR IERR

Standalone ⎯ MST[axis] ECLEAR[axis] ⎯

2.1.3.1.3 External Start

The external start (/CSTA) input allows motion to be started by taking the /CSTA input low.

By default, the external start input is disabled (EXST=0), which will allow motion to start immediately upon receipt
of any motion command. If the external start input is enabled (EXST=1), then any motion command sent will wait
for the /CSTA input to go low before motion is started. The Commander core can buffer up to 3 motions, on a
first-in first-out order. They will start one at a time each time the /CSTA input goes low.

The logical input of the /CSTA input cannot be changed.

ASCII EXST

Standalone ⎯

2.1.3.1.4 Manual pulse generator (MPG) inputs

An MPG is similar to an encoder in that it is a type of pulse generator that can be used to communicate to the
Commander core a speed and direction. The difference between the two is that an MPG commands motion,
whereas an encoder reports the motion.

The MPG input can be used for a number of functions such as:

1) A manual pulse generator, which allows for fine adjustment of an axis.

20 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2) Cam follower, which will allow the axis to follow a cam axis based on its encoder output.

3) Electronic gearing, which allows an axis to follow the input commands but at a different rate of speed

(faster or slower).

The Commander core has a dedicated MPG input for each axis. To enable the MPG input, set the MPE[axis]
command to 1. To disable the MPG input, set the MPE[axis] command to 0.

The MPG inputs are controlled by three commands: MPG signal input mode (POL[axis]), multiplication
(MPM[axis]) and division (MPD[axis]). These work together to set how the pulses from the MPG input controls
the motion of an axis.

Figure 2-8

MPG signal input mode

The Commander core can accept two different pulse types
which can be set using the POL[axis](Bit15~16).

1) Two pulse type (not common) is where pulses are

sent to A input to count up and B input to count

down. Each pulse input is one count of the

encoder.

2) A/B phase type (common).

a. For an A/B phase type there should be

90° difference between the pulses from

A and B. See Figure 2-11.

b. By default, when the A phase leads the

B phase motion is in the positive

direction, when B phase leads the A

phase motion is in the negative

direction. The direction can be changed

by POL[axis](Bit14). See Figure 2-11.

c. For an A/B phase type you can select x1,

x2 or x4 multiplication rate. Figure 2-12

shows how the A/B phase counts would

be interpolated for a x1, x2, and x4

multiplication rate.

i. x1 multiplication – Only the

rising edge of the A phase is

counted, B phase is not counted

and only used to check the

direction of motion.

ii. x2 multiplication – The rising and

falling edge of the A phase is

counted, B phase is not counted

and only used to check the direction of motion.

iii. x4 multiplication – The rising and falling edge of the A and B phase is counted, and used

to check the direction of motion.

Figure 2-11

Figure 2-11

Figure 2-11

Figure 2-12

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 21

Maximum frequency input on the MPG line is the maximum pulses that can be input to the MPG input, not the
counts. Since most manual pulse generator outputs are rated based on a x4 multiplication rate, the output
frequency of pulses is most likely ¼ the count rate output. Please check the datasheet for your manual pulse
generator to confirm.

Electronic gearing the MPG signal

After the input mode stage, the MPG pulse signal is converted to counts based on the POL[axis] settings. The
counts then pass through an electronic gearing stage, which includes a multiplier MPM[axis] and divider
MPD[axis] circuit.

MPM[axis] can be used to access the
multiplier. The multiplier can be set to a
value from [1 to 32]. A value of 1 will turn
off the multiplier.

MPD[axis] is the numerator of the divider
circuit. The MPD[axis] can be set to a value from [1 to 2048]. The denominator of the divider circuit is fixed as
2048. A value of 2048 will turn the divider off.

The multiplier and divider circuits can be
used together to create any ratio. The
multiplier and divider use the following
equation to determine the number of

output counts2:

Output counts = (MPG counts) ∗
MPM ∗ MPD

2048

MP[axis] can be written to set an MPG position or read to see the current position. The counter value here is the
final counts after the electronic gearing stage.

ASCII MPD[axis] MPE[axis] MPM[axis] MP[axis] POL[axis]

Standalone ⎯ MPGE[axis] ⎯ ⎯ ⎯

2.1.3.2 High-speed Inputs/Outputs

The Commander core has a number of high-speed inputs and outputs that have dedicated functions. These
include position latching inputs and synchronization outputs. If these functions are not needed for your
application, they can also be used as general-purpose inputs or outputs.

2.1.3.2.1 High-Speed Digital Inputs

The Commander core provides four (4) high-speed inputs. Each input can independently be set as a position
latching input or general-purpose input. By default, these inputs are set to general-purpose input.

Position Latching Inputs

Any of the four high-speed inputs can be set independently to be position latch inputs by enabling the feature
using the LT[axis] command for the corresponding axis. This feature will allow the controller to perform a high-
speed position capture of both pulse and encoder counters based on a digital input trigger. The timing between
digital input trigger being received and the capture of the pulse and encoder position is 150 to 200ns.

Each axis has a designated digital input to perform a high-speed position latch. See corresponding latch input for
each axis in Table2- 3 latching inputs below.

2 MPG counts are counts after the input mode setup done by POL[axis].

Figure 2-13

Figure 2-14

22 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Axis Input

X DI1/LTCx

Y DI2/LTCy

Z DI3/LTCz

U DI4/LTCu

Table2- 3 latching inputs

Use the LT[axis] command to enable and disable the latch feature. To read the latch status, use the latch status
LTS[axis] command. Table 2-4 LTS command return below describes the possible return values of the latch status
command.

Value Condition

0 Latch off

1 Latch on and waiting for latch trigger

2 Latch triggered

Table 2-4 LTS command return

Once the latch is triggered, the triggered pulse position can be retrieved using LTP[axis] command. Similarly, the
triggered encoder position can be retrieved using the LTE[axis] command.

When StepNLoop mode is enabled, the position value is invalid.

ASCII LT[axis] LTS[axis] LTP[axis] LTE[axis]

Standalone LT[axis] LTS[axis] LTP[axis] LTE[axis]

High-Speed Digital Inputs

Any of the four high-speed inputs can be set independently to be general-purpose inputs by disabling the position
latch feature using the LT[axis] command for the corresponding axis. These inputs are set to general-purpose by
default.

The digital input status of all four available inputs can be read with the DI command. Digital input values can also
be referenced one bit at a time by using the DI[1-4] commands. Note that the indexes are 1-based for the bit
references. For example, DI1 refers to bit 0, not bit 1. See Table 2-5 DI command below for details.

Bit Input Bit-Wise
Command

0 Digital Input 1 DI1

1 Digital Input 2 DI2

2 Digital Input 3 DI3

3 Digital Input 4 DI4

Table 2-5 DI command

If a digital input is on, the corresponding bit of the DI command is 1. Otherwise, the bit status is 0. The voltage level
required to activate a digital input is determined by the polarity setting. The DIP command can be used to toggle
the polarity of the digital inputs.

ASCII DI DI[1-4] DIP LT[axis]

Standalone DI DI[1-4] ⎯ LT[axis]

2.1.3.2.2 High-Speed Digital Output

The Commander core provides four (4) high-speed outputs. Each output can independently be set as a
synchronization output or a general-purpose output. By default, the outputs are set to general-purpose outputs.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 23

Synchronization Outputs

The Commander core provides four high-speed synchronization outputs. This feature allows the controller to
perform a high-speed comparison between the encoder or pulse position counter and a set condition
(comparator), which is set with the SYNP[axis] command. When the condition is met, the corresponding
synchronization output is enabled. The timing between the condition being met and the synchronization output
being triggered is 150 to 200ns.

There are three modes for the synchronization outputs to be enabled, which are set with the SYNC[axis]
command:

1. At position mode (counter = comparator)

2. > or < position mode (counter is either > or < then the comparator)

3. Continuous mode (every comparator position)

Each axis has a designated high-speed synchronization output. While synchronization output is enabled for an
axis, the corresponding digital output cannot be manually controlled by the user. See corresponding
synchronization output for each axis in Table 2-6 synchronization output below.

Axis Output

X DO1/SYNCx

Y DO2/SYNCy

Z DO3/SYNCz

U DO4/SYNCu

Table 2-6 synchronization output

Use the SYNO[axis] command to enable and the SYNF[axis] command to disable the synchronization feature. To
read the synchronization status, use the latch status SYNS[axis] command.

Value Condition

0 Synchronization output configuration is disabled

1 Wait for the establishment of comparison condition

2 Comparison condition is established

Table 2-7 SYNS command return

In continuous mode, there is an option for a synchronization window function. When enabled with the
SYNWO[axis] command, the synchronization function will run continuously, but only outputs a pulse when the
counter is between the synchronization maximum SYNMAX[axis] and minimum SYNMIN[axis] points. There is no
loss of synchronization when outside the synchronization window while continuous mode is enabled. To disable
the window function use the SYNWF[axis] command, synchronization will not be lost. To simultaneously disable
the window function and continuous sync mode use the SYNF[axis] command.

The DOP can be used to toggle the polarity of the digital outputs.

ASCII SYNO[axis] SYNWO[axis] SYNF[axis] SYNWF[axis] SYNS[axis]

Standalone SYNON[axis] ⎯ SYNOFF[axis] ⎯ SYNSTAT[axis]

ASCII SYNP[axis] SYNC[axis] SYNMAX[axis] SYNMIN[axis] DOP

Standalone SYNPOS[axis] SYNCFG[axis] ⎯ ⎯ ⎯

24 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

High-Speed Digital Outputs

Any of the four high-speed outputs can be set independently to be general-purpose outputs by disabling the
synchronization feature using the SYNF[axis] command for the corresponding axis. These outputs are set to
general-purpose by default.

The 4-bit DO command can be used to set all the digital outputs at once. The DO value is a decimal number and
must be within the range of 0-15.

Digital outputs can also be set one at a time with the DO[1-4] commands. Note that the indexes are 1-based for
the bit references. For example, DO1 refers to bit 0, not bit 1. See Table 2-8 DO command below for details.

Bit Output Bit-Wise
Command

0 Digital Output 1 DO1

1 Digital Output 2 DO2

2 Digital Output 3 DO3

3 Digital Output 4 DO4

Table 2-8 DO command

If a digital output is turned on, the corresponding bit of the DO command is 1. Otherwise, the bit status is 0. The
voltage level of the digital output when it is on or off is determined by the polarity setting. The DOP command can
be used to toggle the polarity of the digital outputs.

The initial state of the digital outputs can be defined by setting the 4-bit DOBOOT register to the desired initial
digital output value. The DOBOOT value must be within the range of 0-15. The value is stored to flash memory
once the STORE command is issued.

Bit Output Setting

0 Digital Output 1 0 - OFF 1 - ON

1 Digital Output 2 0 - OFF 1 - ON

2 Digital Output 3 0 - OFF 1 - ON

3 Digital Output 4 0 - OFF 1 - ON

Table 2-9 DOBOOT command

ASCII DO DO[1-4] DOP DOBOOT SYNF[axis] STORE

Standalone DO DO[1-4] ⎯ ⎯ SYNOFF[axis] STORE

2.1.3.3 General-purpose input/output

The Commander core has a number of general-purpose inputs and outputs: configurable digital I/O, analog inputs
and PWM outputs. There is a built-in function that will allow a joystick connected to the analog inputs to be used
for control of the X and Y-axis.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 25

2.1.3.3.1 Configurable Digital I/O

The Commander core has 32 general-purpose configurable digital I/O available. The IO command can be used to
access the current configurable I/O status. The value must be a 32-bit integer.

Configurable digital I/O can also be accessed one bit at a time using the IO[1-32] commands. Note that the indexes
are 1-based for the bit references. For example, IO1 refers to bit 0, not bit 1.

In order to set a configurable digital I/O as an input or output, use the IOCFG command. If a bit in the 32-bit IOCFG
value is set to 0, the corresponding configurable digital I/O will be defined as an input. If the bit is 1, the
configurable digital I/O will be defined as an output.

The initial state of the configurable digital I/O can be defined by setting the 32-bit IOBOOT register to the desired
initial configured output value. The IOBOOT value will only be applicable to configurable I/O defined as outputs by
the IOCFG command. The IOBOOT value must be a 32-bit value. The value is stored to flash memory once the
STORE command is issued. The settings take effect on the next power cycle.

The 2-bit IOP command can be used to toggle the polarity of the configurable I/O. See Table 2-10 IOP command
below.

Bit Description Setting

0 Logic of input setting 0 - Negative logic Active Low 1 - Positive logic Active High

1 Logic of output setting 0 - Negative logic Active Low 1 - Positive logic Active High

Table 2-10 IOP command

ASCII IO IO[1-32] IOBOOT IOCFG IOP STORE

Standalone IO IO[1-32] ⎯ ⎯ ⎯ STORE

2.1.3.3.2 Analog Input/output

The Commander core has two 10-bit analog inputs available. The AI[1-2] command can be used to read the current
analog input value. The return value is in milliVolts and can range from 0 to 3300.

The voltage supplied to the analog inputs should stay within the 0V to 3.3V range.

ASCII AI[1-2]

Standalone AI[1-2]

26 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Joystick Control

Joystick control is available on the Commander core for the X and Y-axis. When this mode is enabled, the pulse
speed and direction outputs for the X and Y axes can be controlled by the corresponding analog input. See the axis
to analog input assignment in the table below.

Axis Input

X AI1

Y AI2

Table 2-11 analog inputs

To enable or disable joystick control for
an axis, use the ASCII command JENA or
the standalone command JOYENA. The
joystick enable parameter is a 2-bit value.
For example, A joystick enable value of 3
means the joystick feature is enabled on
both the X and Y-axis. If joystick control is
enabled, StepNLoop is automatically
disabled.

For the Commander core to properly
translate the analog inputs into a safe
pulse speed and direction output for
your system, you first must define what is acceptable and safe for your system. This includes defining the relation
between voltage and direction of travel, and the zero-tolerance (or dead) zone during which there is no output
from the Commander core. When the input voltage is within the voltage (± JTOL) range before and after the
midpoint (MID) between the maximum input voltage
(JMAX) and the minimum input voltage (JMIN), the
movement of the axis is stopped. See Figure 2-15.

The safe speeds are defined as the maximum speed the
analog input can command and maximum rate of speed
change. The joystick positioning soft limits define where
the analog inputs can command a system to move. Soft
limit values can be set for the inner and outer limits, in
the positive and negative direction for both axes (JLIM).
When it goes beyond the inner limit, it decelerates and
stops, and if it goes beyond the outer limit, it
immediately stops. See Figure 2-16.

For more information on setting the limits refer to Section 2.5.1 Joystick operation and the individual commands
in the Command Reference.

ASCII JENA JMAX[axis]] JMIN[axis] JSPD[axis] JDEL[axis] JTOL[axis] JLIM[number]

Standalone JOYENA ⎯ ⎯ JOYHS[axis] JOYDEL[axis] ⎯ ⎯

2.1.3.3.3 Pulse-width modulated Outputs.

The Commander core has two pulse-width modulated (PWM) outputs available. The PWM outputs are 500Hz and
can range from a 1% to 99% on-time duty cycle. The PWM[1-2] command is used to set the value which is in
percent and can range from 1 to 99.

PWM1 is % of the time the signal is low, and PWM2 is % of time the signal is high.

ASCII PWM[1-2]

Standalone PWM[1-2]

Figure 2-15

Figure 2-16

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 27

2.1.4 Motion Profile

Any given motion profile can be plotted as
a trapezoid, where Time is the base,
Velocity is the height, Acceleration rate is
the angle and Distance is the area.

By default, the Commander core uses a
linear acceleration profile as shown in
Figure 2-17.

To reduce jerk, an S-curve acceleration
profile as shown in Figure 2-18 can also be
achieved by using the SCV[axis]
command. Setting this command to 1 will
enable s-curve for the indicated axis.

The S-curve acceleration profile reduces
jerk, but it requires more power from the
motor than a linear acceleration profile,
when the time for acceleration is the
same.

For a typical move, the axis will start
moving at the low-speed setting and
accelerate to the high-speed setting. Once
at high-speed, the motor will move at a
constant speed until it decelerates from
high-speed to low-speed and immediately
stops.

High-speed and low-speed are in pps
(pulses/second). Use the commands
HSPD[axis] and LSPD[axis] to set/get individual high speed and low-speed settings in both ASCII and standalone
mode. To access the global high-speed and low-speed values, use the ASCII/standalone commands HSPD and
LSPD.

Acceleration and deceleration time are in milliseconds. Use the ACC[axis]/DEC[axis] command to set/get individual
acceleration/deceleration values. To access the global acceleration/deceleration value, use the corresponding ACC
or DEC command.

The minimum and maximum acceleration values depend on the high-speed and low-speed settings. Refer to
Appendix B: Speed Settings for details.

Individual speed and acceleration settings will take priority over global settings. A global setting will only be used
under the following conditions:

1) The corresponding individual setting is defined as zero.

2) Coordinated motion is being performed.

ASCII HSPD LSPD ACC DEC HSPD[axis] LSPD[axis] ACC[axis] DEC[axis] SCV[axis]

Standalone HSPD LSPD ACC DEC HSPD[axis] LSPD[axis] ACC[axis] DEC[axis] ⎯

Figure 2-17 Linear acceleration

Figure 2-18 S-curve acceleration

28 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2.1.5 Power-on settings

The Commander core has the ability to set and store the default power-on value for the digital outputs and the
stand-alone programs.

The initial state of the enable outputs can be defined by setting the 4-bit EOBOOT register to the desired initial
enable output value.

The initial state of the high-speed digital outputs can be defined by setting the 4-bit DOBOOT register to the
desired initial digital output value. The DOBOOT value must be within the range of 0-15.

The initial state of the configurable digital I/O can be defined by setting the IOBOOT register to the desired initial
configured output value. The IOBOOT value will only be applicable to configurable I/O defined as outputs by the
IOCFG command. The IOBOOT value must be a 32-bit value.

Standalone programs can be configured to run on boot-up using the SLOAD command.

The values for the power-on settings are stored to flash memory once the STORE command is issued. They will
take effect on the following power cycle.

ASCII EOBOOT DOBOOT IOBOOT IOCFG SLOAD STORE

Standalone ⎯ ⎯ ⎯ ⎯ ⎯ STORE

2.1.6 System settings

The Commander core has the ability to set and store the following system settings:

Command Description

ERC[axis] Setting the conditions for output of the ERC (error clear) signal.

ERCD[axis] Setting the delay time of the ERC signal.

ERCP[axis] Setting the on-time of the ERC signal.

EXST Enables the use of the external start signal.

IERR Disables the error flag for the end-limit and alarm signal.

INP Enables the use of the INP signal.

POL[axis]
Sets the input modes and the polarity of the pulse, direction
outputs, end limits, home, alarm, SD, INP, ERC, EO, encoder,
index, and MPG signals.

SCV Enables the use of S-curve acceleration profile

SDC Sets the operation when the SD signal is detected.

SDE Enables the use of the SD signal.

STORE Saves the settings of commands to the flash memory.

Table 2-12 system settings

2.1.6.1 ERC (deflection counter clear)

The Commander core can be setup to send an ERC (deflection counter clear) signal to clear any external errors
from the servo drive. The ERC signal is configured with the following commands:

ERC[axis] command is 2-bit and sets the output condition of the ERC signal. The ERC[axis] command can write a
new condition or read the condition based on the chart below.

Bit Condition for Output Setting

0 Error Stop 0: Disabled (Not used) 1: Enabled (Used)

1 Homing operation complete 0: Disabled (Not used) 1: Enabled (Used)

Table 2-13 ERC command

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 29

ERCD[axis] command sets the delay time used when a deviation clear signal is sent. The ERCD[axis] command can
write a new delay or read the condition based on Table 2-14 ERCD command below.

Value Delay

0 0 µs

1 12 µs

2 1.6 ms

3 104 ms

Table 2-14 ERCD command

ERCP[axis] command sets the width of the output deviation clear signal. The ERCP[axis] command can write a
new pulse width or read the condition based on Table 2-15 ERCP command below.

Value Pulse Width

0 12 µs

1 102 µs

2 409 µs

3 1.6 ms

4 13 ms

5 52 ms

6 104 ms

Table 2-15 ERCP command

ASCII ERC ERCD ERCP

Standalone ⎯ ⎯ ⎯

2.1.6.2 INP (in-position)

The INP[axis] command sets if the Commander core will use the INP (in-position) signal to determine if the motor
has reached the requested position. When the INP[axis] function is enabled the operation completion status is
delayed until an in-position signal is received. The ERCP[axis] command can write a new pulse width or read the
condition based on the chart below.

Value Discription

0 Disabled (Not used)

1 Enabled (Used)

Table 2-16 INP command

ASCII EXST

Standalone ⎯

2.1.6.3 Input modes and the polarity of the input/output logic

The POL[axis] command is a 17-bit value used to set or read the input mode and/or input/output logic of various
signals. Use Table 2-17 POL command below to see description of each bit setting.

30 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Bit Description

0~2
The output modes of command pulse signals

Positive direction operation Negative direction operation

PUL output DIR output PUL output DIR output

000

001

010

011

100

101

110

111

Bit Description Setting

3 Logic of End limit signal (+/-L) 0 Positive logic 1 Negative logic

4 Logic of home signal (H) 0 Negative logic 1 Positive logic

5 Logic of alarm signal (ALM) 0 Negative logic 1 Positive logic

6 Logic of deceleration signal (SD) 0 Negative logic 1 Positive logic

7 Logic of in-position (INP) 0 Negative logic 1 Positive logic

8 Logic of deviation counter clear signal (ERC) 0 Negative logic 1 Positive logic

9 Logic of enable signal (EO) 0 Negative logic 1 Positive logic

10 Encoder input direction 0 Do Not Reverse 1 Reverse

11~12
Specification of the feedback pulse signal 00 x1 01 x2

10 x4 11 two pulse

13 Logic of Z-index signal 0 Falling Edge 1 Rising Edge

14 MPG input direction 0 Do Not Reverse 1 Reverse

15~16
Specification of the MPG input signal 00 x1 01 x2

10 x4 11 two pulse

Table 2-17 POL command

The polarity can also be set for the digital inputs, digital outputs, and configurable I/O. The DIP command can be
used to toggle the polarity of the digital inputs and the DOP can be used to toggle the polarity of the digital
outputs. For these 0 = Negative logic, 1 = Positive logic.

The IOP command is 2-bit and can be used to toggle the polarity of the configurable I/O. Bit 0 sets the input logic
and Bit 1 sets output logic. See Table 2-18 IOP command below.

Bit Description Setting

0 Logic of input setting 0 Negative logic 1 Positive logic

1 Logic of output setting 0 Negative logic 1 Positive logic

Table 2-18 IOP command

ASCII POL[axis] DIP DOP IOP

Standalone ⎯ ⎯ ⎯ ⎯

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 31

2.1.7 Flash Memory

The Commander core has a built-in flash memory that allows it to store many of the system settings that are
loaded on startup.

Once set, using the STORE command will save the settings in the table below to Flash memory.

DB ERC[axis] INP[axis] JLIM[number] MPD[axis] SDC[axis] SLOAD[prg]

DIP ERCD[axis] IOBOOT JMAX[axis] MPE[axis] SDE[axis] SLR[axis]

DOBOOT ERCP[axis] IOCFG JMIN[axis] MPM[axis] SL[axis] SLT[axis]

DOP EXST IOP JSPD[axis] POL[axis] SLA[axis] V[0-99]

EINT ID JDEL[axis] JTOL[axis] SAP SLE[axis] ZCNT

EOBOOT IERR JENA

Table 2-19 STORE command

2.2 Single-axis and Multi-axis operations

Singe-axis operations involve the moving of a single axis and do not require interaction with any other axis. Multi-
axis operations involve the moving of two or more axes; however, it does not require interaction between the
axes. This section will cover basic function blocks that are used for these operations.

2.2.1 Motor Power

The enable output (EO) command is most often used to command the driver to enable or disable the current to
the motor. The effect of the enable output signals will depend on the characteristics of the motor drive. The
polarity of this output needs to match the drive and is set with the POL[axis](Bit9).

The enable output (EO) command is a 4bit value where a bit value of 1 is enabled and 0 is disabled for the
corresponding axis. EO has a range of 0-15.

Enable output values can also be referenced one bit at a time by the EO[1-4] commands. Note that the indexes are
1-based for the bit references (i.e. EO1 refers to bit 0, not bit 1).

Bit Output Bit-Wise
Command

0 EOx [X-axis] EO1

1 EOy [Y-axis] EO2

2 EOz [Z-axis] EO3

3 EOu [U-axis] EO4

Table 2-20 EO command

The initial state of the enable outputs can be defined by setting the 4-bit EOBOOT register to the desired initial
enable output value. The value is stored to flash memory once the STORE command is issued.

Bit Output Setting

0 EOx [X-axis] 0 - Disabled 1 - Enabled

1 EOy [Y-axis] 0 - Disabled 1 - Enabled

2 EOz [Z-axis] 0 - Disabled 1 - Enabled

3 EOu [U-axis] 0 - Disabled 1 - Enabled

Table 2-21 EOBOOT command

ASCII EO EO[1-4] EOBOOT STORE POL[axis]

Standalone EO EO[1-4] ⎯ STORE ⎯

32 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2.2.2 Jog operation

A jog move is used to continuously move the motor without stopping. Use the J[axis]+/J[axis]- command when
operating in ASCII mode and the JOG[axis]+/JOG[axis]- in standalone mode.

The Commander core will output pulses to move the motor immediately upon receipt of the command. Any
number of motors can be moved independently at the same time.

The motor will start moving at the defined low speed, then will accelerate as defined by the acceleration time and
type, to the final defined high speed.

Once this move is started, the speed can be adjusted by using the on-the-fly speed change command; however,
the motor will only stop if a limit input is activated during the move or a STOP command is issued.

Figure 2-19

If a motion command is sent while the controller is already moving, the command is not processed. Instead, an
error response is returned. See Table 4-41 in 4.2 Error Codes for details on error responses.

ASCII J[axis][+/-]

Standalone JOG[axis][+/-]

Operating procedure

If there is no change in the previous set data, the operation 1 below is not necessary.

1) Set the operating speeds

2) Issue the J command

3) Issue stop command

Operating conditions

• Joystick operation is disabled

• MPG operation is disabled

• Operation is stopped

• The error status is clear

Related commands:

LSPD, HSPD, ACC, DEC, J, SCV, STOP, ABORT, ESTOP, MST

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 33

2.2.3 Stopping

When the motor is performing any type of move, motion can be stopped abruptly or with deceleration. It is
recommended to use decelerated stops so that there is less impact on the system. The ABORT[axis] command will
immediately stop an individual axis. Use the ABORT command to immediately stop ALL axes.

To employ deceleration on a stop, use the STOP[axis] command to stop an individual axis. Use the STOP command
to stop ALL axes.

If an interpolation operation is in progress when a STOP[axis] or ABORT[axis] command is entered, all axes
involved in the interpolation operation will stop.

ASCII ABORT ABORT[axis] STOP STOP[axis]

Standalone ABORT ABORT[axis] STOP STOP[axis]

2.2.4 Positioning operation

Unlike a Jog operation, a Positioning operation is a move with a specified stop point. The stop point will be either
an absolute position in relation to the 0 start point that was defined during homing, or an incremental position
from the motor’s current position.

The motor will start moving at the defined low speed, then will accelerate based on the acceleration time and
type, to the final defined high speed. Once it gets close to the stop point, it will decelerate as defined by the
deceleration time and type to the defined low speed, then the motor will stop.

At any time while the motor is moving, the specified stop point can be adjusted by using the on-the-fly target
position change command, and the speed it is moving can be adjusted by using the on-the-fly speed change
command.

In addition, the motor will stop without completing the defined positioning operation if a limit input is activated
during the move or a STOP/ABORT command is issued.

The Commander core can perform positional moves for individual axes, multiple axes, or linear coordinated
motion.

2.2.4.1 Absolute or Incremental

The Commander core can perform positional moves in absolute or incremental mode. For absolute mode, the ABS
command is used, and for incremental mode the INC command is used. Best practice is to set the absolute or
incremental mode during system setup. The move mode will remain in absolute or incremental mode until it is
changed.

In absolute mode, the axis will move to the specified target position. In incremental mode, the axis will increase or
decrease its current position by the specified target position.

The MM command can be used to determine the current move mode of the controller. Table 2-22 MM command
below details the value assignment of the MM command.

Value Setting

0 Absolute Mode

1 Incremental Mode

Table 2-22 MM command

ASCII ABS INC MM

Standalone ABS INC ⎯

34 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Operating procedure

If there is no change in the previous set data, the operation 1 and 2 below is not necessary.

1) Set the operating speeds

2) Set the positioning mode with ABS or INC command

3) Issue a positioning command

Operating conditions

• Joystick motion is disabled

• MPG operation is disabled

• Operation is stopped

• The error status is clear

Related commands

LSPD, HSPD, ACC, DEC, X, Y, Z, U, SCV, ABS, INC, MST

2.2.4.2 Individual Position Moves

For individual axis control use X, Y, Z and U commands followed by the target position value. For example, the
X1000 command will move the X-axis to position 1000 if performed in absolute mode. X1000Y2000 command will
move the X-axis to position 1000 and Y-axis to position 2000 if performed in absolute mode. Any number of axes
can be moved independently at the same time. If EINT=0 then the axes will move independently; however, if
EINT=1 the move will be linearly interpolated. For more information see section 2.3.1 Linear interpolation.

The Commander core will output pulses to move the motor immediately upon receipt of the command.

ASCII X[target] Y[target] Z[target] U[target] EINT

Standalone X[target] Y[target] Z[target] U[target] EINT

2.2.5 Homing operation

Home search routines involve moving the motor and using the home, limit, slowdown, or Z-index inputs to
determine the zero-reference position (home point) used for absolute positioning. The Commander core has
thirteen (13) different built-in home search routines. Since the signal or signals used to define the home point
varies depending on the homing mode selected, carefully select a homing mode that best matches the environment
and available input signals of your system.

Some homing routines that involve a decelerated stop may result in a final position that is non-zero. The zero-
reference position is correctly preserved as the position that was marked when the home trigger condition was
detected.

In ASCII mode, use the H[axis][+/-][mode] command to perform a home move. Standalone mode will use the
HOME[axis][+/-][mode] command to perform a homing routine. Please refer to Appendix A: Homing Mode
Actions for a full list of the available homing routines and a diagram of the inputs required and their timing.

When ERC[axis](bit1) is set to 1, the ERC(deflection counter clear) signal is output when the zero-reference
position (home point) is reached. For more information on the ERC timing see homing operation in Appendix A:
Homing Mode Actions.

ASCII H[axis][+/-][mode] ERC[axis]

Standalone HOME[axis][+/-][mode] ⎯

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 35

2.2.5.1 Z-move Operation

The Commander core has a built-in move called a Z-Move. When the ZMOVE[axis][dir] command is sent the
motor will move in the direction commanded at HSPD until such time as the number of Z-index pulses are
detected as set by the ZCNT[axis]=[0-15] command.

The ZCNT[axis] command also works with any homing operation that uses the Z-index pulses as part of the homing
operation to set the number of Z-index pulses that need to be detected. The range for ZCNT[axis] is 0-15. The
number of Z-index pulses to be detected will be the number set plus one. Example: 0 = stop at the 1st Z-index
detection, 1 = stop at the 2nd Z-index detection, 15 = stop at the 16th Z-index detection.

ASCII ZMOVE[axis][dir] ZCNT[axis]

Standalone ZMOVE[axis][dir] ⎯

Operating procedure

If there is no change in the previous set data, the operations 1 and 2 below are not necessary.

1) Set the operating speeds

2) Set the Z-index count numbers and the Z-index input logic

3) Issue a homing command

Operating conditions

• Joystick motion is disabled

• MPG operation is disabled

• Operation is stopped

• The error status is clear

Related commands

LSPD, HSPD, ACC, DEC, H, ZCNT, MST

36 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2.3 Interpolation Operation

Interpolated operations involve two or more axes whose movements are interdependent. There are many types
of interpolated moves. Linear interpolation is when two or more axes works together to cause movement along a
straight line. For linear interpolation, each axis moves in only one direction, and start and stop at the same time.
Circular interpolation is when two axes work together to cause movement along the outer rim of a circle. For
circular Interpolation, each axis will change direction and speed as required to allow for a circular path of
movement. A popular subset of circular interpolation is arc interpolation, when two axes work together to move
along the outer rim of a circle for a set number of degrees. Helix or tangential interpolation is when a circular or
arc interpolation of the X and Y-axis is combined with linear interpolation of the center point of the circle and the
Z-axis. This allows for movement along a helical motion path. The Commander core allows for all of these different
moves, independently or in combination. These moves can be buffered together to allow for seamless continuous
motion.

For more details on how the Commander core handles interpolation, refer to Appendix C - Interpolation.

2.3.1 Linear interpolation

The Commander core can perform linear interpolated motion for up to 4 axes. The X, Y, Z, and U commands can be
combined into a single move command that consists of up to 4 target positions (one for each axis). Any
combination of axes can be used for linear interpolation, and at least two axes must be referenced in order to
perform linear interpolation.

By default, interpolation is enabled (EINT=1). While
interpolation is enabled, linear interpolation operations
are performed by writing positioning commands of
multiple axes on the same line. There is no dedicated
command for linear interpolation. If Interpolation is
disabled (EINT=0), writing positioning commands of
multiple axes on the same line will not result in an
interpolated move. See Figure 2-20.

For example, the X1000Y1000Z100U800 will move all
four axes to the position (1000, 1000, 100, 800).
Similarly, the X1000Y-1000Z500 will move the X, Y, and Z-axis to the position (1000, -1000, 500) while the U axis
remains idle.

The Commander core will output pulses to move the motors immediately upon receipt of the command. While
performing a linear interpolated motion, any axis not included in the linear interpolated motion can be moved
independently at the same time, or included in other interpolated motions, without impacting the linear
interpolated motion.

For more details on how the Commander core handles interpolation refer to Appendix C - Interpolation.

ASCII X[target] Y[target] Z[target] U[target] EINT

Standalone X[target] Y[target] Z[target] U[target] EINT

Operating procedure

If there is no change in the previous set data, operations 1 to 3 below are not necessary

1) Set an operating speed

2) Set the positioning coordinate mode with ABS or INC command

3) Enable an interpolation operation with the EINT command

4) Issue a positioning operation command of multiple axes

Figure 2-20

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 37

Operating conditions

• Joystick motion is disabled

• MPG operation is disabled

• Operation is stopped

• The error status is clear

Related commands

LSPD, HSPD, ACC, DEC, EINT, X, Y, Z, U, MST

2.3.2 Circular interpolation

Circular interpolation is
when two axes work
together to cause
movement along the
outer rim of a circle. The
Commander core
supports circular
interpolation moves using
the CIRP and CIRN
commands. This will
perform a complete 360°
circle using any two axes.
When less than 360° of
motion is needed, then
arc interpolation is used
with the ARCP and ARCN
commands. The two
functions can be combined
when more than 360° of motion is needed. Circles and arcs can be drawn using any two axes.

CIR[A1][A2]P[C1]:[C2] – Draw a circle in CW direction where [A1][A2] signifies the selected axes and [C1][C2]
signifies the absolute position of the circle center.

CIR[A1][A2]N[C1]:[C2] – Draw a circle in CCW direction where [A1][A2] signifies the selected axes and [C1][C2]
signifies the absolute position of the circle center.

For example, the command
CIRXZP1000:1000 will move the X and
Z axis in a full circle in the CW
direction with the XZ position (1000,
1000) as the circle center.

Circular interpolated moves will use
the current axis positions as well as
the specified circle center to
automatically calculate the circle
radius. The maximum allowable
radius is 134,216,773 pulses for
circular interpolated moves. All
circular moves are interpreted as
absolute moves.

Figure 2-21

Figure 2-22

38 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2.3.2.1 Arc interpolation

The Commander core supports arc interpolation moves using the
ARCP and ARCN commands.

ARC[A1][A2]P[C1]:[C2]:[θ] – Draw an arc in CW direction
where[A1][A2] signifies the selected axes, [C1][C2]signifies the
absolute position of the arc center, and θ signifies the absolute
arc angle.

ARC[A1][A2]N[C1]:[C2]:[θ] – Draw an arc in CCW direction where
[A1][A2] signifies the selected axes, [C1][C2]signifies the absolute
position of the arc center, and θ signifies the absolute arc angle.

An arc interpolated move will use the current axis positions as
well as the specified arc center to automatically calculate the
radius. The maximum allowable radius is 134,216,773 pulses on
arc interpolated moves. All arc moves are interpreted as absolute
moves.

The absolute angle (θ) is in units of a milli-degree. For
example, to move to the absolute angle of 45°, the
absolute angle parameter would be 45000.The absolute
angle locations can be found in Figure 2-23.

Figure 2-24 shows the difference between issuing the
ARCXYP0:0:90000 and the ARCXYN0:0:90000 command
if both cases have the same starting point at 0 degrees.

For more details on how the Commander core handles
interpolation refer to Appendix C - Interpolation.

ASCII CIR[A1][A2]P[C1]:[C2] CIR[A1][A2]N[C1]:[C2]

Standalone CIR[A1][A2]P[C1]:[C2] CIR[A1][A2]N[C1]:[C2]

ASCII ARC[A1][A2]P[C1]:[C2]:[θ] ARC[A1][A2]N[C1]:[C2]:[θ]

Standalone ARC[A1][A2]P[C1]:[C2]:[θ] ARC[A1][A2]N[C1]:[C2]:[θ]

Operating procedure

If there is no change in the previous set data, operations 1 to 3 below are not necessary.

1) Set an operating speed

2) Set the positioning coordinate mode with ABS or INC command

3) Enable the interpolation operation with the EINT command

4) Issue a circular interpolation operation command

Operating conditions

• Joystick motion is disabled

• MPG operation is disabled

• The operation is stopped

• The error status is clear

Related commands

LSPD, HSPD, ACC, DEC, EINT, ARC, CIR, MST

Figure 2-23

Figure 2-24

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 39

2.3.3 Helical or Tangential interpolation

The Commander core is able to combine the linear and circular interpolation operations in order to perform helix
or tangential type moves. These moves can only use the X and Y axes for the circular interpolation, with the Z axis
used for linear coordination.

A move with less than 360° movement for the X and Y axis is made by using the ARCTP and ARCTN commands. A
move with 360° movement for the X and Y axis is made by using the CIRTP and CIRTN commands. A continuous
movement with more than 360° of movement is possible by using the buffer operation to combine the
ARCTP/ARCTN and CIRTP/CIRTN commands.

ARCTP[C1]:[C2]:[θ]:[Z target] – Draw an arc in
CW direction where [C1][C2] signifies the
absolute position of the arc center, θ signifies
the absolute arc angle, and [Z target] signifies
the absolute end point.

ARCTN[C1]:[C2]:[θ]:[Z target] – Draw an arc in
CCW direction where [C1][C2] signifies the
absolute position of the arc center, θ signifies
the absolute arc angle, and [Z target] signifies
the absolute end point.

CIRTP[C1]:[C2]:[Z target] – Draw a circle in CW
direction where [C1][C2] signifies the absolute
position of the circle center and [Z target]
signifies the absolute end point.

CIRTN[C1]:[C2]:[Z target] – Draw a circle in CCW
direction where [C1][C2] signifies the absolute
position of the circle center and [Z target]
signifies the absolute end point.

Note that these commands will use the U axis
for calculation purposes; therefore, the U axis should NOT be used for motion while using these commands.

For more details on how the Commander core handles interpolation refer to Appendix C - Interpolation.

ASCII ARCTP[C1]:[C2]:[θ]:[Z target] ARCTN[C1]:[C2]:[θ]:[Z target]

Standalone ARCTP[C1]:[C2]:[θ]:[Z target] ARCTN[C1]:[C2]:[θ]:[Z target]

ASCII CIRTP[C1]:[C2]:[Z target] CIRTN[C1]:[C2]:[Z target]

Standalone CIRTP[C1]:[C2]:[Z target] CIRTN[C1]:[C2]:[Z target]

Figure 2-25

40 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2.3.4 Buffered interpolation operation

The Commander core’s buffer mode allows for up to
100 prebuffered interpolated moves. This allows for
the creation of unique patterns without any delay
between moves. Each move has its own constant
speed setting.

For normal operation, commands are written to an
operation register.

For buffer operation, the coordinated motion
commands are written to the buffer registers
instead. There are 100 separate buffer registers to
hold coordinated motion commands. When the
start buffer motion (BSTART) command is sent, the
coordinated motion command in Buffer0 is moved
to the operation register. Then the coordinated
motion command in Buffer1 is moved to Buffer0
and so on. This process is continued until all the
buffer registers are empty or the buffer mode is
turned off with the (BF) command. See table below
for details.

Operation register
For normal operation, a command is written in the operation register, and the
operation starts immediately.

Buffer0

100

Buffer
registers

For buffer operations, coordinated motion commands are written to the buffer
registers. When buffer operation starts, these commands are automatically written
to the operation register, which automatically starts the operation, and be deleted
from the buffer registers. Buffered commands are processed on a first-in first-out
basis.

Buffer1

Buffer2

••
••

•

Buffer97

Buffer98

Buffer99

New Commands
As the buffered commands are moved to the operating register, the buffer registers
can be loaded with additional coordinated motion commands.

To turn the buffer mode on and off, use the BO and BF ASCII commands, respectively. For standalone mode, the
BUFON and BUFOFF commands should be used. The buffered move operation cannot be used while StepNLoop is
enabled.

When buffer mode is enabled, motion will not start until the appropriate command has been sent, even if there
are commands in the buffer. This allows the buffer to be fully loaded before any move is processed. The command
BSTART starts feeding the buffered commands to the operation register.

The status of the buffer operation can be read using the BSTAT command. The return value will contain the buffer
enable status, buffer start and end positions, and the number of available buffer registers. The return value has
the following format:

Figure 2-26

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 41

[Buffer enabled]:[Buffer start]:[Buffer end]:[Available Buffer]

The buffer operation only supports motion of the X, Y, and Z-axis. In addition, only linear, circular and arc
interpolation moves can be added to the buffer. As such only the linear, circular and arc interpolation commands
below are supported during buffered operation.

Linear interpolation

In ASCII mode, a buffered move command will have the syntax I[X pos]:[Y pos]:[Z pos]:[speed]. For example, the
I1000:2000:3000:5000 command indicates position (1000, 2000, 3000) at a speed of 5000. If buffered mode is not
enabled, the I command will not be processed by the controller.

In standalone mode, the buffered move command will have the syntax X[pos]Y[pos]Z[pos], and the speed for the
move command will use the current global high-speed setting. If buffered mode is not enabled, these standalone
commands will be processed as linear interpolation commands.

Circular and Arc interpolation

The ARC and CIR commands, described in Section 2.3.2 Circular interpolation, can be used when buffer mode is
enabled. The syntax for these commands is the same in ASCII and standalone mode.

ASCII BO BF BSTART BSTAT I[X]:[Y]:[Z]:[S]

Standalone BUFON BUFOFF ISTART ⎯ X[pos]Y[pos]Z[pos]

Operating procedure

1) Enable buffer operation with BO commands.

2) I command writes an interpolation operation (CIR or ARC command is also available)

3) Buffer operation is started with a BSTART command

4) Add the interpolation operation while checking the buffer register free space with the BSTAT command

5) If there is no interpolation operation to be added, the buffer operation needs to be disabled by the BF

command after completion

Operating conditions

• Joystick motion is disabled

• MPG operation is disabled

• Corrective action is disabled

• The error status is clear

Related commands

BO, BF, BSTAT, BSTART, I, CIR, ARC

42 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2.4 On-the-fly-speed/target position change

The Commander core supports the ability to change the moving speed and/or the target position on the fly.

2.4.1 On-the-fly speed change

This function can change the speed while an axis is in motion, at any point in the motion profile. Figure 2-27,
shows a few examples of how speed changes are executed.

If the target speed is changed during the acceleration process, and:

1) If the newly set value is

lower than the pulse rate at

the time of the change,

deceleration is made to the

newly set value.

2) If the newly set value is

equal to or higher than the

pulse rate at the time of

the change but less than

the previous target,

acceleration is made to the

newly set value.

3) If the newly set value is

greater than the previous

target, acceleration is made to the preset pulse rate and then to the newly set value.

If the target speed is changed while traveling at the previously set target speed:

4) If the new value is higher than the previous target, acceleration is made to the newly set value.

5) If the new value is lower than the previous target, deceleration is made to the newly set value.

On-the-fly speed change can be achieved using the SSPD[axis]=[newspeed] command. Before executing an on-
the-fly speed change, you need to ensure the correct speed range is set with the SSPDM[axis] command. For
more information on the speed range setting see Appendix B: Speed Settings and SSPDM in the command
refence.

ASCII SSPD[axis]=[newspeed] SSPDM[axis]

Standalone SSPD[axis]=[newspeed] SSPDM[axis]

Operating procedure

If there is no change in the previous set data, operation 1 below is not necessary.

1) Set the speed range with SSPDM command

2) Issue the speed change command

Operating conditions

• While operating at HSPD (not decelerating)

• Buffer operation must disable

• S-curve acceleration/deceleration mode must disable

Related commands

SSPD, SSPDM, MST, PS

Figure 2-27

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 43

2.4.2 On-the-fly target position change (Target position change)

On-the-fly target position change can be achieved using the T[axis][newtarget] command, and will change the final
destination of the motor while the motor is moving. If the motor has already passed the new target position, it will
reverse direction when the target position change command is issued.

Figure 2-28

An on-the-fly target position change command will only be valid if the specified axis is performing an individual
position move. An interpolated, jogging, or homing move will not accept an on-the-fly target position change
command.

In ABS mode, the target change will be to the absolute position from the homed zero point. In INC mode the
target change will be to the incremental position from the original move start point.

ASCII T[axis][newtarget]

Standalone ⎯

Operating procedure

There is no predetermined procedure. On-the-fly target position change commands can be issued while the axis is
moving

Operating conditions

• While operating with the set value of HSPD (not decelerating)

Related communication commands

T, MST

44 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2.5 Advanced Functions

2.5.1 Joystick operation

Joystick control is available on the Commander core for the X and Y-axis. When this mode is enabled, the pulse
speed and direction output for the X and Y axis can be controlled by their corresponding analog input. See the axis
to analog input assignment in Table 2-23 below.

Axis Analog Input

X AI1

Y AI2

Table 2-23 Analog inputs

To enable or disable joystick control for an axis, use the ASCII command JENA or the standalone command
JOYENA. The joystick enable parameter is a 2-bit value. For example, A joystick enable value of 3 means the
joystick feature is enabled on both the X and Y-axis. If joystick control is enabled, StepNLoop is automatically
disabled.

Bit Description Setting

0 Joystick control X-axis 0 - Disabled 1 - Enabled

1 Joystick control Y-axis 0 - Disabled 1 - Enabled

Table 2-24 JENA command

For the Commander core to properly translate the analog inputs into a safe pulse speed and direction output for
your system, you first must define what is acceptable and safe for your system. This includes defining the relation
between voltage and direction of travel, and the zero-tolerance (or dead) zone during which there is no output
from the Commander core. The safe speeds are defined as the maximum speed the analog input can command
and maximum rate of speed change. The joystick positioning soft limits define where the analog inputs can
command a system to move.

2.5.1.1 Direction control

The JMAX[axis] command can be used to define the maximum analog input value for the specified axis. This
parameter has units of millivolts and a range of 0 to 3300. This value will define the analog input value in which the
maximum joystick speed occurs in the positive direction. This command is only available in ASCII mode.

Similarly, the JMIN[axis] command can be used to define the minimum analog input value for the specified axis.
This parameter has units of millivolts and a range of 0 to 3300. This value will define the analog input value in
which the maximum joystick speed occurs in the negative direction. This command is only available in ASCII mode.

MID represents the zero-joystick position. There is no command corresponding to MID. This is an internally
calculated value using the following formula:

𝑀𝐼𝐷 = ((𝐉𝐌𝐀𝐗[𝐚𝐱𝐢𝐬] – 𝐉𝐌𝐈𝐍[𝐚𝐱𝐢𝐬]) / 2) + 𝐉𝐌𝐈𝐍[𝐚𝐱𝐢𝐬]

During joystick operation, analog input of JMIN[axis] to MID represents negative joystick direction and analog
input of MID to JMAX[axis] represents positive
joystick direction. Setting the value of JMAX[axis]
to be less than the value of JMIN[axis] will result
in a change of direction polarity during joystick
operation.

The ASCII command JTOL[axis] can be used to
define the zero-tolerance (or dead) zone around
the MID value. No movement will occur while the
analog input value is within the zero-tolerance
zone. This parameter has units of millivolts and a Figure 2-29

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 45

range of 0 to 3300. The zero-tolerance parameter will be on the positive and negative side of the MID point to
define to the zero-tolerance zone. See Figure 2-29 for details.

Example: The zero-tolerance zone at JMAX = 3,250 mV, JMIN = 10 mV, JTOL = 50 mV will be

• 1580 mV ~ 1680 mV since ((3,250 – 10) ÷ 2) +10 = 1,630 mV

• 1,630 mV ±50 mV

2.5.1.2 Speed control

The maximum joystick speed for the X and Y-axes is set using the ASCII command JSPD[axis]. For standalone mode,
the JOYHS[axis] command should be used. This parameter will define the speed of the specified axis at the
maximum and minimum analog input values.

The maximum allowable speed change (delta) for the X and Y axes is set using the ASCII command JDEL[axis]. For
standalone mode, the JOYDEL[axis] command is used. This parameter will control the acceleration/deceleration of
the specified axis while the joystick mode is enabled.

2.5.1.3 Position control

Joystick control also has soft limits, which are defined by a negative
outer limit, negative inner limit, positive inner limit, and a positive
outer limit, using the JLIM[number] command. The soft limits are in
units of pulses.

When moving in a positive direction, as soon as the positive inner
limit is crossed, the speed is reduced. Speed will continue to decline
as the position moves closer to the outer limit value. If the position
reaches the positive outer limit, the joystick speed is set to zero and
movement in the positive direction is prohibited. The same
behavior is applicable to the negative direction and negative limits.

Figure 2-30 represents the relationship between the joystick speed and inner and outer limits.

Table 2-25 JLIM command below shows the command assignment of the negative and positive soft limits for
joystick control, as well as a summary of the additional joystick commands.

Command Description

JLIM1 X-axis negative outer limit

JLIM2 X-axis negative inner limit

JLIM3 X-axis positive inner limit

JLIM4 X-axis positive outer limit

JLIM5 Y-axis negative outer limit

JLIM6 Y-axis negative inner limit

JLIM7 Y-axis positive inner limit

JLIM8 Y-axis positive outer limit

Table 2-25 JLIM command

This limit value is based on the value "0" of the command pulse counter. If a stop command is issued while a
joystick operation is active, it will return an invalid status.

ASCII JENA JMAX[axis]] JMIN[axis] JSPD[axis] JDEL[axis] JLIM[number]

Standalone JOYENA ⎯ ⎯ JOYHS[axis] JOYDEL[axis] ⎯

Figure 2-30

46 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Operating procedure

If there is no change in the previous set data, operation 1 below is not necessary.

1) Set all the joystick operation values

2) Enable joystick operation with JENA command

3) Move the axis by operating the joystick

4) Disable the joystick operation at the end of the operation

Operating conditions

• Joystick operation is disabled

• MPG operation is disabled

• Operation is stopped

• The error status is clear

Related communications commands

JSPD, JDEL, JMAX, JMIN, JTOL, JENA, JLIM, AI, MST

2.5.2 Manual pulse generator (MPG) operation

The MPG input can be used for a number of functions such as:

1) A manual pulse generator, which allows for fine adjustment of an axis.

2) Cam follower, which will allow the axis to follow a cam axis based on its encoder output.

3) Electronic gearing, which allows an axis to follow the input commands but at a different rate of speed

(faster or slower).

The Commander core has a dedicated MPG input for each axis. To enable the MPG input, set the MPE[axis]
command to 1. To disable the MPG input, set the MPE[axis] command to 0.

The MPG inputs are controlled by three commands: MPG signal input mode (POL[axis]), multiplication
(MPM[axis]) and division (MPD[axis]). These work together to set how the pulses from the MPG input controls
the motion of an axis.

Figure 2-31

2.5.2.1 MPG signal input mode

MPG signal input mode

The Commander core can accept two different pulse types which can be set using the POL[axis](Bit15~16).

1) Two pulse type (not common) is where pulses

are sent to A input to count up and B input to

count down. Each pulse input is one count of

the encoder.

Figure 2-32

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 47

2) A/B phase type (common).

a. For an A/B phase type there should be 90°

difference between the pulses from A and B.

See Figure 2-35.

b. By default, when the A phase leads the B phase

motion is in the positive direction, when B phase

leads the A phase motion is in the negative

direction. The direction can be changed by

POL[axis](Bit14). See Figure 2-35.

c. For an A/B phase type you can select x1, x2 or

x4 multiplication rate. Figure 2-35 shows how

the A/B phase counts would be interpolated for

a x1, x2, and x4 multiplication rate.

i. x1 multiplication – Only the rising edge of

the A phase is counted, B phase is not

counted and only used to check the

direction of motion.

ii. x2 multiplication – The rising and falling

edge of the A phase is counted, B phase is

not counted and only used to check the

direction of motion.

iii. x4 multiplication – The rising and falling

edge of the A and B phase is counted, and

used to check the direction of motion.

Maximum frequency input on the MPG line is the maximum pulses that can be input to the MPG input, not the
counts. Since most manual pulse generator outputs are rated based on a x4 multiplication rate, the output
frequency of pulses is most likely ¼ the count rate output. Please check the datasheet for your manual pulse
generator to confirm.

2.5.2.2 Electronic gearing the MPG signal

After the input mode stage, the MPG pulse signal is converted to counts based on the POL[axis] settings. The
counts then pass through an electronic gearing stage, which includes a multiplier MPM[axis] and divider
MPD[axis] circuit.

MPM[axis] can be used to access the
multiplier. The multiplier can be set to
a value from [1 to 32]. A value of 1 will
turn off the multiplier.

MPD[axis] is the numerator of the
divider circuit. The MPD[axis] can
be set to a value from [1 to 2048].
The denominator of the divider
circuit is fixed as 2048. A value of
2048 will turn the divider off.

Figure 2-35

Figure 2-35

Figure 2-35

Figure 2-37

Figure 2-36

48 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

The multiplier and divider circuits can be used together to create any ratio. The multiplier and divider use the

following equation to determine the number of output counts3:

Output counts = (MPG counts) ∗
MPM ∗ MPD

2048

Example: Final ratio that is needed is 100 pulses-in and 125 pulses-out (1.25). By setting MPM[axis] to 5, then the
input of 100 pulses is 500. (see Figure 2-36) since 500/4 = 125 MPD[axis] = 512 (512/2048 = ¼) the output pulses
will be 125 (see Figure 2-37).

125 = (100) ∗
5 ∗ 512

2048

MP[axis] can be written to set an MPG position or read to see the current position. The counter value here is the
final counts after the electronic gearing stage.

ASCII MPD[axis] MPE[axis] MPM[axis] MP[axis]

Standalone ⎯ MPGE[axis] ⎯ ⎯

Operating procedure

If there is no change in the previous set data, operation 1 below is not necessary.

1) Set the signal input mode and the magnification, etc.

2) Enable the MPG operation with MPE command

3) Input the MPG signal and operate

4) Disable the MPG function at the end of operation.

Operating conditions

• Joystick motion is invalid

• Operation is stopped

• The error status is clear

Related commands

MPE, MPD, MPM, MP, MST

3 MPG counts are counts after the input mode setup done by POL[axis].

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 49

2.5.3 StepNLoop Closed Loop Control operation

The Commander core features a closed-loop position verification algorithm called StepNLoop. The algorithm
requires the use of an incremental encoder.

StepNLoop performs the following operations:

1) Position Verification: At the end of any targeted move, StepNLoop will perform a correction

if the current error is greater than the tolerance value (SLT[axis]).

2) Delta Monitoring: The delta value is the difference between the actual and the target

position. When delta exceeds the error range value (SLE[axis]), the motor is stopped and the

StepNLoop status goes into an error state4. Delta monitoring is performed during moves –

including homing and jogging. To read the delta value, use the D[axis] command.

StepNLoop is commonly used to close a position loop on stepper
systems (encoder on back of motor). StepNLoop can also be
used for the external position loop on stepper or servo systems,
which have a loss of motion due to backlash or hysteresis, as
long as the encoder feedback to the Commander core is from the
final work point instead of the motor. See Figure 2-39 Encoder
at motor and Figure 2-39 Encoder at work point, as examples.

This table outlines how StepNLoop behaves in different
scenarios.

Condition
StepNLoop behavior

(motor is moving)
StepNLoop behavior

(motor is idle)

δ ≤ SLT Continue to monitor the D[axis]
In Position.
No correction is performed.

δ >SLT AND
δ < SLE

Continue to monitor the D[axis]
Out of Position.
A correction is performed.

δ >SLT AND
δ > SLE

Stall Error.
Motor stops and signals an error4.

Error Range Error.
Motor stops and signals an error4.

Correction
Attempt > SLA

N/A
Max Attempt Error.
Motor stops and signals an error5.

Table 2-26 StepNLoop behavior

Key:
[δ]: Error between the target position and actual position
SLT: Tolerance range
SLE: Error range
SLA: Max. correction attempt

4 The error status here is not the main status (MST) but the status (SLS) of the compensation operation.

5 The error status here is not the main status (MST) but the status (SLS) of the compensation operation.

Figure 2-39 Encoder at motor

Figure 2-39 Encoder at work point

50 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

In order to perform the StepNLoop Closed Loop Control operation, the following four parameters must be set
beforehand. Parameters should be set for each axis.

StepNLoop Parameter Description Command

StepNLoop Ratio

The ratio between motor pulses and encoder counts. This ratio will
depend on the motor type, micro-stepping, encoder resolution, and
decoding multiplier. The value must be in the range [0.001,
999.999].

SLR[axis]

Tolerance
The maximum error between target and actual position that is
considered “In Position.” In this case, no correction is performed.
Units are in encoder counts.

SLT[axis]

Error Range
The maximum error between target and actual position that is not
considered a serious error. If the error exceeds this value, the
motor will stop immediately and go into an error state.

SLE[axis]

Correction Attempt
The maximum number of correction tries that the controller will
attempt before stopping and going into an error state.

SLA[axis]

A convenient way to find the StepNLoop ratio is to set EX=0, PX=0 and move the motor +1000 pulses. The ratio can
be calculated by dividing 1000 by the resulting EX value. Note that the value must be positive. If it is not, then the
direction polarity must be adjusted. This test should be performed while StepNLoop is disabled.

To enable/disable the StepNLoop feature use the SL[axis] command. To read the StepNLoop status, use SLS[axis]
command. See Table 27 SL command below for a list of the return values.

Value Description

0 Idle

1 Moving

2 Correcting

3 Stopping

4 Aborting

5 Jogging

6 Homing

7 Z-Homing

8
Correction range error. To clear this
error, use CLR command.

9
Correction attempt error. To clear
this error, use CLR command.

10
Stall Error. D value has exceeded the
correction range value. To clear this
error, use CLR command.

11 Limit Error

12 N/A (i.e. StepNLoop is not enabled)

13 Limit homing
Table 27 SL command

While StepNLoop is enabled, position move commands are in term of encoder position. For example, X1000 means
to move the motor to encoder position 1000. This applies to individual as well as interpolated moves.

Additionally, once StepNLoop is enabled, the speed is in encoder speed. For example, HSPD=1000 when
StepNLoop is enabled means that the target high speed is 1000 encoder counts per second. This only applies to
individual axis moves.

For linear interpolated movement, the speed is calculated as pulse/sec, NOT encoder counts/sec. The same will
apply to the X and Y axis while performing arc/circular interpolated moves.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 51

ASCII SL[axis] SLR[axis] SLT[axis] SLE[axis] SLA[axis] SLS[axis}

Standalone SL[axis] ⎯ ⎯ ⎯ ⎯ SLS[axis}

ASCII D[axis] CLR[axis]

Standalone ⎯ ⎯

Operating procedure

If there is no change in previous set data, operation 1 below is not necessary.

1) Set each setting value of StepNLoop Closed Loop Control operation.

2) Enable the StepNLoop Closed Loop Control operation function with the SL command.

3) Execute a positioning operation.

4) A StepNLoop Closed Loop Control operation is executed after the positioning operation is completed.

Operating conditions

• Joystick operation is invalid

• Buffer operation is invalid

• The error status is clear

Related commands

SL, SLR, SLT, SLE, SLA, SLS

52 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2.6 Status monitoring function

The Commander core has a number of registers that can be queried at any time for the current system status.

2.6.1 Counter values

The Commander core has three counters for each axis that can be read to obtain the current number of output
pulses, encoder pulses received, and the deviation between the output and input.

2.6.1.1 Output Pulse Counter

This counter shows the total number of pulses that have been to the motor driver. It can be read using the ASCII
command PP, which returns the pulse count of all 4 axes. The return value has the following format:

[Pulse X]:[Pulse Y]:[Pulse Z]:[Pulse U]

The pulse count of each axis can also be accessed individually. To manually set/get the pulse position of an
individual axis, use the P[axis] command.

When StepNLoop closed-loop control is enabled, the pulse counter commands return the real-time target position
of the motor. When StepNLoop closed-loop control is disabled the pulse position commands return the step
position. See 2.5.3 StepNLoop Closed Loop Control operation for details on the StepNLoop feature.

2.6.1.2 Feedback Pulse Counter

This counter shows the total number of pulses that have been received on the encoder input. It can be read using
ASCII command EP, which returns the encoder counts of all 4 axes. The return value has the following format:

[Encoder X]:[Encoder Y]:[Encoder Z]:[Encoder U]

The encoder count of each axis can also be accessed or set individually, by using the E[axis] command.

2.6.1.3 Deviation Counter

This counter is enabled with StepNLoop operations, and shows the difference between commanded position and
the encoder input. To get the deviation counts of an individual axis, use the D[axis] command. When the
StepNLoop function is disabled, the value of D[axis] will be 0.

ASCII P[axis] PP E[axis] EP D[axis]

Standalone P[axis] ⎯ E[axis] ⎯ ⎯

Operating procedure

There is no particular condition.

Related commands

P, PP, E, EP, D

2.6.2 Axis status register

The Commander core has two axis-monitoring registers for each axis; these can be read to obtain the current
status of each axis.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 53

2.6.2.1 Axis Status Acquisition Command

Motor/axis status register can be read anytime using MST[axis] command. The reply contains information about
the motor status, including error status such as end limit stop, alarm stop, and EMG stop. Value of the motor
status is relayed as an integer value with the following bit assignment:

Bit Function Condition

0 Accelerating 0: Not Accelerating 1: Accelerating

1 Decelerating 0: Not Decelerating 1: Decelerating

2 Constant Speed 0: Not at Constant Speed 1: At Constant Speed

3 Alarm Signal Input Status 0: OFF 1: ON

4 Positive End Limit Status 0: OFF 1: ON

5 Negative End Limit Status 0: OFF 1: ON

6 Home or Origin Status 0: OFF 1: ON

7 Slowdown Input Status 0: OFF 1: ON

8 Positive End Limit Error6 0: No Error 1: Error

9 Negative End Limit Error6 0: No Error 1: Error

10 Alarm Error6 0: No Error 1: Error

11 In-Position Input Status 0: OFF 1: ON

12 Deviation Counter Clear 0: OFF 1: ON

13 Z-index Input Status 0: OFF 1: ON

14 External Status Input 0: OFF 1: ON

15 EMG Signal Status 0: OFF 1: ON

16 EMG Error Status6 0: No Error 1: Error

17 Stop by Slowdown Detection7 0: Not Stopped 1: Stopped

18 Wait for In-Position Input Status 0: Not Waiting 1: Wait

19 Wait for External Start Signal Input 0: Not Waiting 1: Wait

Table 2-28 MST command

Additional information on this register can be found in the command reference.

2.6.2.2 Pulse Speed register

The current pulse rate register can be read using the command PS[axis]. For units, see the table below. Section
2.5.3 StepNLoop Closed Loop Control operation contains more information.

Operation Mode Speed Units

StepNLoop disabled Pulse / sec

ALL interpolated moves Pulse / sec

StepNLoop enabled and non-interpolated move Encoder counts / sec

Table 2-29 PS command units

6 For Bits 8, 9, 10, and 16 (+ end limit, - end limit, alarm, and EMG errors), errors must be cancelled with the CLR
command before next operation.

7 For Bit 17 (Slowdown Detection), additional operations can be performed with flag ON (1) but the flag will remain
ON until canceled by CLR command.

54 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

2.6.2.3 Error clear command

Many errors in the Commander core will set flags to alert to the fact that an error occurred. These error flags can
be cleared with use of the CLR ASCII command. For standalone mode, the ECLEAR[axis] command should be used.

This command clears the error flags one axis at a time; there is no command to clear all flags from all axes at once.
These commands only clear the error flags, they do not clear the cause of the error.

ASCII MTS[axis] CLR PS[axis]

Standalone MTS[axis] ECLEAR[axis] PS[axis]

Operation procedure

There is no particular procedure.

Related commands

MST, CLR, PS

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 55

2.7 Standalone program Specification

The Commander core supports standalone programming, which allows the controller to execute a user-defined
program that is stored in its internal memory. The standalone program can be run independently of USB and serial
communication, or while communication is active.

2.7.1 Program Development

Commander core utilizes A-Script, a BASIC-like language that helps the programmer quickly write programs for
motion control projects, including conditional statements, subroutines, and mathematical expressions. The
programming syntax uses a series of standalone commands, listed in section 5.2 Standalone Command Set, that
allows the programmer to build single and multithread programs that can be compiled and run in the controller.
By writing lines of code using the set of commands that make up the A-Script language, set-up, control of motion,
management of inputs and outputs, and error handling can all be addressed. A basic program consists of a start
line (PRGxx) and an end line (END). All code is written between the PRG and END lines. Use the Utility software to
write, compile, download, upload, and execute programs.

2.7.2 Conditional loop control

A-Script supports a number of conditional statements that will perform different actions for different conditions.
A-Script supports the following conditional statements: IF/ELSEIF/ELSE loop and WHILE loop. Table 2-30
conditions below shows the available conditions.

Symbol Meaning

= Equals

!= Not Equal

> Greater than

< Less than

>= Greater than or Equals

<= Less than or Equals

Table 2-30 conditions

Examples of using conditional loop control in a program can be found in sections 5.4.3 Standalone Example
Program 3 – Single Thread, through 5.4.10 Standalone Example Program 10 – Multi-thread with subroutine.

2.7.3 Multi-thread

The Commander core utilizes four independent processors that can run simultaneously. Therefore, it is possible to
run multiple programs at the same time with or without coordination.

While multiple programs may be running independently, global variable settings can cause unintended
consequences between individual programs. As an example, a thread that changes the position mode to
incremental could inadvertently cause the position moves of a second thread to respond incorrectly, if it was
based on absolute position mode. As such it is recommended that all motion activities be written in one thread,
which will prevent unintended interactions between axes, utilizing the other threads to manage I/O and other
monitoring operations. 5.4.8 Standalone Example Program 8 – Multi-thread, through 5.4.10 Standalone Example
Program 10 – Multi-thread with subroutine contains examples of using multi-threads in a program.

2.7.4 Subroutines

Up to 32 (0-31) subroutines can be called upon. Subroutines are independent program snippets that can be
accessed based on the needs of the programmer. Typically, subroutines are used to perform functions that are
repeated throughout the operation and can be used in conjunction with logic statements related to motor actions
or the status of inputs and outputs. Sections 5.4.6 Standalone Example Program 6 – Single Thread with
subroutine, 5.4.9 Standalone Example Program 9 – Multi-thread with subroutine, and 5.4.10 Standalone Example
Program 10 – Multi-thread with subroutine contains examples of using a subroutine in a program.

56 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Subroutine 31 is used specifically for error handling and is executed whenever an error occurs.

Note: subroutines can be shared by both standalone programs and the ASCII command set. Once a subroutine is
written into the flash memory, it can be recalled via ASCII communication using the GS command. Standalone
programs can also jump to a subroutine using the GOSUB command. The subroutines are referenced by their
subroutine number [SUB 0- SUB 31]. If a subroutine number is not defined, the controller will return with an error.

2.7.5 Error Handling

Subroutine 31 (SUB 31) is used specifically for error handling and is executed whenever an error occurs. If SUB 31
is not defined, the program will cease execution and go into an error state.

How errors are addressed can be coded in SUB 31. Conditional statements that check for specific error conditions
can execute additional operations, depending on the error conditions. Typically, the code within subroutine 31 will
contain the standalone command ECLEAR[axis] in order to clear the current error. Sections 5.4.7 Standalone
Example Program 7 – Single Thread with error handling, 5.4.9 Standalone Example Program 9 – Multi-thread with
subroutine, and 5.4.10 Standalone Example Program 10 – Multi-thread with subroutine contain examples of using
subroutine 31 to perform error handling.

The return jump from subroutine 31 will be determined by the ASCII command SAP. Write a "0" to this setting to
have the standalone program jump back to the last performed line. Write a "1" to this setting to have the
standalone program jump back to the first line of the program.

Value Description

0 Return to last excited line

1 Return to first line of program

Table 2-31 SAP command

2.7.6 Standalone Variables

The Commander core has 100 32-bit signed standalone variables available for general purpose use. They can be
used to perform basic calculations and support integer operations. The V[0-99] command can be used to access
the specified variables. The syntax for all available operations can be found in the table below. Note that these
operations can only be performed in standalone programming.

Operator Description Example

+ Integer Addition V1=V2+V3

- Integer Subtraction V1=V2-V3

* Integer Multiplication V1=V2*V3

/ Integer Division (round down) V1=V2/V3

% Modulus V1=V2%5

>> Bit Shift Right V1=V2>>2

<< Bit Shift Left V1=V2<<2

& Bitwise AND V1=V2&7

| Bitwise OR V1=V2|8

~ Bitwise NOT V1=~V2

Table 2-32 operations

All variables can be accessed and written with the ASCII V[0-99] command and stored to flash memory using the
STORE command.

2.7.7 Compiling, Saving, Downloading

Standalone programs can be written to the Commander core using the Windows GUI. Refer to the Software
Manual for details. Once a standalone program is written by the user, it is then compiled, saved for future

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 57

reference and downloaded to the Commander core. Each line of written standalone code creates 1-4 assembly
lines of code after compilation. See the software manual for more information.

2.7.8 Standalone Control

The Commander core supports the simultaneous execution of four standalone programs. All programs can be
controlled by the SACTRL[0-3]=[control] ASCII command and the SR[0-3]=[control] standalone command. Program
0 will use command SACTRL0, Program 1 will use command SACTRL1, and so on. The following [control]
assignments can be used for the standalone control command.

Value Description

0 Stop standalone program

1 Start standalone program

2 Pause standalone program

3 Continue standalone program

Table 2-33 SACTRL command

2.7.9 Standalone Status

The SASTAT[0-3] command can be used to determine the current status of the specified standalone program. The
table below details the returned values of this command.

Value Description

0 Idle

1 Running

2 Paused

3 N/A

4 Error

Table 2-34 SASTAT command

The SPC[0-3] command can also be used to find the current assembled line that the specified standalone program
is executing. Note that the return value of the SPC[0-3] command is referencing the assembly language line of
code and does not directly transfer to the pre-compiled user generated code. The return value can range from [0-
1799].

2.7.10 Standalone Run on Boot-Up

Standalone can be configured to run on boot-up using the SLOAD command. Once this command has been issued,
the STORE command will be needed to save the setting to flash memory. It will take effect on the following power
cycle. See description in the table below for the bit assignment of the SLOAD setting.

Bit Description

0 Standalone Program 0

1 Standalone Program 1

2 Standalone Program 2

3 Standalone Program 3

Table 2-35 SLOAD command

ASCII SACTRL[0-3] SASTAT[0-3] SPC[0-3] GS[0-31] V[0-99] SLOAD

Standalone SR[0-3] ⎯ ⎯ GOSUB[0-
31]

V[0-99] ⎯

ASCII SAP STORE

Standalone ⎯ STORE

58 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

3.0 Communication Interface
The Commander core has a number of communication methods available. The default method is USB
communication. There are also a number of available Serial Communication methods, including UART, I2C, and SPI.

3.1 USB Communication

The Commander core is a HID device and is USB 2.0 compliant. No additional USB drivers are needed to
communicate with the Commander core. All USB communication is done using an ASCII command protocol.

3.1.1 Typical USB Setup

When using a breakout board, the Commander core can be connected to a
PC directly via USB or through a USB hub, allowing for multiple units to
connect and communicate at once. All USB cables should have noise
suppression chokes, also known as ferrite beads, to avoid communication
loss or interruption. See Figure 3-40.

When designing your own PCB please follow the layout guidelines as
outlined by the USB 2.0 specifications. D+/D- traces should be the same
length, maintain a nominally 90Ω differential impedance, and have a
continuous ground plane directly beneath the D+/D- traces and extend at
least five times the spacing width to either side of the D+/D- traces.

Figure 3-40

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 59

3.1.2 HID Communication API

Communication between the PC and Commander core is done using the Windows-compatible DLL API function
calls shown below. Windows programming languages that use a DLL, such as Visual BASIC, Visual C++, Java, Python,
LabVIEW, etc. can be used to communicate with the Commander core.

Typical communication transaction time for sending a command from the PC and getting a reply from the
controller using the SendReceiveCommanderHID API function is in single-digit milliseconds. This value will vary
with the CPU speed and type of command requested.

The DLL file CMDHidApi.dll (32bit) or CMDHidApi_64.dll (64bit) will be needed to access these API functions.
These DLL files are not included with this product, please download them from our web site.

For HID communication, the following DLL API functions are provided:

Function name Description

GetCommanderHIDnumber() Return the number of Commander core devices connected
to the host

GetCommanderHIDName(int index,
 char* name)

Obtain the device name string of a device connected to
host

OpenCommanderHID(HANDLE* pHandle,
 char* name)

Obtain the HANDLE* to operate a device

CloseCommanderHID(HANDLE* pHandle) Close the specified HANDLE*

SendReceiveCommanderHID(HANDLE* pHandle Communication between the host and the device

Table 3-36 DLL/API functions

3.1.2.1 How to use

1. Obtain the number of Commander core HID devices connected to the PC with

GetCommanderHIDnumber.

2. Get the device name string of the number (index) specified by GetCommanderHIDName.

3. Get the HANDLE* to manipulate the Commander core with the device name string specified by

OpenCommanderHID.

4. Communicate with the Commander core using SendReceiveCommanderHID by specifying the acquired

HANDLE*.

5. After sending the command string, the reply string will return.

a. For the command definition and the returned serial number string, refer to the Command

Reference.

6. Close the HANDLE* with CloseCommanderHID when finished with all operations.

60 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

3.1.2.2 GetCommanderHIDnumber

Overview

Used to get total number of Commander core HID devices connected to the host. The number of devices is
represented in the return value. The function will return 0 if no devices are connected. This function shows that
the Commander core is correctly recognized by the host.

Argument

None

Reply

Int type
0 No recognized device
1 One device was recognized

  pcs of device are recognized

Example

(1) VC

int numDev; // The number of devices
numDev = GetCommanderHIDnumber(); // Obtain the number of devices connected to the host

(2) VB

Dim numDev as Integer ‘ The number of devices
numDev = GetCommanderHIDnumber() ‘ Obtain the number of devices connected to the host

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 61

3.1.2.3 GetCommanderHIDName

Overview

Obtains the device name string of a Commander core HID device by its index number within the detected
number of devices. The first detected device is indexed as 0, the second as 1, and so on. Will return 1 if
successful, 0 if unsuccessful.

Argument

int number Specify the index number of the device to get name for.
char* name Device name,

The device name will be "CMD-4CR-xx" where xx is the Identification Number (ID) of the device.

Reply

Int type
0 Send Receive failed
1 Send Receive success
Other (-value) Host communication failed (3.1.2.7 Communication Error Codes)

Example

(1) VC

int result; // Function result
char devName[16]; // Device name
result = GetCommanderHIDName(0, devName); // Obtain the device name

(2) VB

Public devName As New String(“”, 15) ‘ Device name
Dim result as Integer ‘ Function result
result = GetCommanderHIDName(0, devName); ‘ Obtain the device name

62 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

3.1.2.4 OpenCommanderHID

Overview

Opens a handle to a Commander core HID device by its device name string. Returns 1 if successful, 0 if
unsuccessful.

Execute this for restart after disconnecting with the function, CloseCommanderHID.

Argument

HANDLE* pHandle Device handle
char* name Device name string,

The device name string is acquired by the function, GetCommanderHIDName

Reply

Int type
0 Send Receive failed
1 Send Receive success
Other (-value) Host communication failed (3.1.2.7 Communication Error Codes)

Example

(1) VC

int result; // Function result
HANDLE devHandle; // Device handle
char devName[16]; // Serial number string
result = OpenCommanderHID(devHandle, devName); // Open device, Obtain handle

(2) VB

Public devHandle As Integer ‘ Device handle
Public devName As New String(“”, 15) ‘ Serial number string
Dim result as Integer ‘ Function result
result = OpenCommanderHID(devHandle, devName); ‘ Open device, Obtain handle

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 63

3.1.2.5 CloseCommanderHID

Overview

Closes a HANDLE* previously opened on a Commander core HID device. The handle cannot be used for
communication once this function is called. Returns 1 if successful, 0 if unsuccessful.

It is recommended that you close all handles when you end the program.

Argument

HANDLE* pHandle Device handle
The device handle is acquired by the function, OpenCommanderHID

Reply

Int type
0 Send Receive failed
1 Send Receive success
Other (-value) Host communication failed (3.1.2.7 Communication Error Codes)

Example

(1) VC

int result; // Function result
HANDLE devHandle; // Device handle
result = CloseCommanderHID (devHandle); // Close the handle

(2) VB

Public devHandle As Integer ‘ Device handle
Dim result as Integer ‘ Function result
result = CloseCommanderHID (devHandle); ‘ Close the handle

64 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

3.1.2.6 SendReceiveCommanderHID

Overview

Sends a command to the Commander core HID device through the open path handle which is specified in the
parameter “pHandle” and reads the response from the device. The command to be sent must be passed as a
string in parameter "command." The response string received from the device is stored in "reply." Returns 1 if
successful, 0 if unsuccessful.

The command and reply parameters must be 63 bytes in length.

Argument

HANDLE* pHandle Device handle
The device handle is acquired by the function, OpenCommanderHID

char* command Command
Requires the storage capacity for 63 bytes

char* reply Reply data
Requires the storage capacity for 63 bytes

Reply

Int type
0 Send Receive failed
1 Send Receive success
Other (-value) Host communication failed (3.1.2.7 Communication Error Codes)

Example

(1) VC

int result; // Function result
HANDLE devHandle; // Device handle
char cmdStr[64]; // Command string
char replyStr[64]; // Reply string

strcpy(cmdStr, “PX”); // Specify a command string
result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr); // Execute the communication

(2) VB

Public devHandle As Integer ‘ Device handle
Dim result as Integer ‘ Function result
Dim cmdStr As New String(””, 63) ‘ Command string
Dim replyStr As New String(””, 63) ‘ Reply string

cmdStr = PX ‘ Specify a command string
result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr); ‘ Execute the communication

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 65

3.1.2.7 Communication Error Codes

Table 3-37 API error codes below is a list of possible error codes from the API and their meaning.

Returned
Value

Description

-1 API to HID, timeout error

-2 API to HID, communication failed with the device

-3 Invalid function

-4 Device not found

-5 Communication path not found

-6 Communication refused by the device

-7 Invalid handle

-8 Not enough memory

-9 Out of memory

-10 In protect status

-11 Write error

-12 Read out error

-13 Invalid parameter

-14 Open failed

-15 Response was received from the device with an unsupported report ID

-16 Response of incorrect size was received from the device

-255 Unknown error during communication
Table 3-37 API error codes

66 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

3.2 Serial Communication

The Commander core has the ability to communicate over a serial communication interface using an ASCII
protocol. Various serial interfaces can be used, depending on the specifications of the breakout board.

3.2.1 Communication Port Settings

The Commander core has the communication port settings shown in Table 3-38 serial port settings below.

Parameter Setting

Byte Size 8 bits

Parity None

Flow Control None

Stop Bit 1
Table 3-38 serial port settings

Commander core provides the user with the ability to set the desired baud rate of the serial communication. In
order to make these changes, first set the desired baud rate by using the DB command. By default, the
Commander core has a baud rate setting of 9600 bps.

Return Value Description

1 9600

2 19200

3 38400

4 57600

5 115200
Table 3-39 DB command

To write the values to the device’s flash memory, use the STORE command. The new baud rate will now be written
to memory, but will not go into effect until after a complete power cycle.

3.2.2 ASCII Protocol

The following ASCII protocol should be used for sending commands and receiving replies from the Commander
core. For details on valid ASCII commands refer to Section 4.0 ASCII Language Specification or the Command
Reference.

Sending Command

ASCII command string in the format of:
@[DeviceName][ASCII Command][CR] ‘[CR] character has ASCII code 13

Receiving Reply

The response will be in the format of:
[Response][CR] ‘[CR] character has ASCII code 13

Example

For querying the polarity of the X-axis
Send: @01POLX[CR]
Reply: 7[CR]

For reading the digital input status
Send: @01DI[CR]
Reply: 8[CR]

For performing a store to flash memory
Send: @01STORE[CR]
Reply: OK[CR]

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 67

3.3 Identification Number

The Commander core allows for each device to have a unique identification number, allowing up to 64 devices to
be connected to the same host. If multiple devices are connected to the host, the identification number for each
device should be unique.

By default, all Commander cores are shipped from the factory with identification number 01. The current
identification number of a device can be found by reading the ID command. Also, the device name will always
include the current identification number. For USB communication the device name will be "CMD-4CR-xx" where
xx is the identification number of the device. For serial communication only the identification number of the device
is used.

In order to change the identification number of the device, first store the desired number using the ID command.
Note that this value must be within the range [00-99].

For example, the command ID=02 can be sent to change the identification number to 02. To save a modified
identification number to the flash memory of the device, use the STORE command. The new identification number
will not take effect until after a power cycle.

3.4 Windows GUI

A Windows GUI program is available for the Commander core via download from our website. The Windows GUI
serves two main functions: (1) provides a shortcut to every ASCII command to assist in testing and troubleshooting
the setup of the Commander core and your own interface code, and (2) allows you to test, program, compile,
download and debug the controller using the A-script standalone language. See the CMD-4CR Software Manual for
details.

68 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

4.0 ASCII Language Specification
Important Note: All the commands described in this section are interactive ASCII commands and are not analogous
to standalone commands. Refer to Section 5.0 Standalone Language Specification.

For more detailed information on any command, please refer to the command refence.

Invalid commands are returned with a “?” Always check for a proper reply when a command is sent. For USB and
RS-485 communication, the commands detailed in section 4.1 ASCII Command Set are valid.

4.1 ASCII Command Set

Command R/W Description Reference
Chapter

ABORT W Immediately stops all motion for all axes 2.2.3

ABORT[axis] W Immediately stops motion in [axis]

ABS W Turns on absolute coordinate mode 2.2.4.1

ACC R Returns current global acceleration value in
ms

2.1.4

ACC=[value] W Sets global acceleration value in ms

ACC[axis] R Returns current [axis] acceleration value in ms

ACC[axis]=[value] W Sets [axis] acceleration value in ms

AI[ch] R Returns analog input status for [ch] in mV 2.1.3.3.2

ARC[A1][A2]N[C1]:[C2]:[Ɵ] W Arc interpolation with axes [A1], [A2], centers
at [C1], [C2], CCW direction to [Ɵ]

2.3.2.1

ARC[A1][A2]P[C1]:[C2]:[Ɵ] W Arc interpolation with axes [A1], [A2], centers
at [C1], [C2], CW direction to [Ɵ]

ARCTN[C1]:[C2]:[Ɵ]:[target] W XY Arc interpolation, centers at [C1], [C2],
CCW direction to [Ɵ] with Z linear
interpolation to [target]

2.3.3

ARCTP[C1]:[C2]:[Ɵ]:[target] W XY Arc interpolation, centers at [C1], [C2], CW
direction to [Ɵ] with Z linear interpolation to
[target]

BF W Disable buffered move 2.3.4

BO W Enable buffered move 2.3.4

BSTART W Start processing the buffer (buffer must be
enabled)

2.3.4

BSTAT R Status of the buffer 2.3.4

CIR[A1][A2]N[C1]:[C2] W Circular interpolation with axes [A1], [A2],
centers at [C1], [C2], CCW direction

2.3.2

CIR[A1][A2]P[C1]:[C2] W Circular interpolation with axes [A1], [A2],
centers at [C1], [C2], CW direction

CIRTN[C1]:[C2]:[target] W XY circular interpolation, centers at [C1], [C2],
CCW direction with Z linear interpolation to
[target]

2.3.3

CIRTP[C1]:[C2]:[target] W XY circular interpolation, centers at [C1], [C2],
CW direction with Z linear interpolation to
[target]

CLR[axis] W Clears limit, alarm status bit, and StepNLoop
errors for [axis]

2.1.3.1.1.1
2.1.3.1.1.2
2.1.3.1.2
2.5.3
2.6.2.3

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 69

Command R/W Description Reference
Chapter

D[axis] R Returns StepNLoop value for [axis] 2.5.3
2.6.1.3

DB R Returns baud rate 2.1.7

DB=[value] W Sets baud rate to [value]

DEC R Returns the current global deceleration value
in ms

2.1.4

DEC=[value] W Sets global deceleration value in ms

DEC[axis] R Returns current [axis] deceleration value in ms 2.1.4

DEC[axis]=[value] W Sets [axis] deceleration value in ms

DI R Returns 4-bits of general-purpose digital
inputs

2.1.3.2.1

DI[in] R Returns bit status of general digital input [in] 2.1.3.2.1

DIP R Returns the digital input polarity 2.1.3.2.1
2.1.6.3
2.1.7

DIP=[pol] W Sets the digital input polarity [pol]

DO R Returns 4-bits of general-purpose digital
outputs.

2.1.3.2.2

DO=[value] W Sets 4-bits of general-purpose digital outputs.

DO[out] R Returns bit status of general digital output
[out]

2.1.3.2.2

DO[out]=[value] W Sets bit of general-purpose digital output [out]

DOBOOT R Returns the DO boot-up state. 2.1.3.2.2
2.1.5
2.1.7

DOBOOT=[value] W Sets the DO boot-up state.

DOP R Returns the digital output polarity 2.1.3.2.2
2.1.6.3
2.1.7

DOP=[pol] W Sets the digital output polarity [pol]

E[axis] R Returns the encoder value of [axis] 2.6.1.2

E[axis]=[value] W Sets the encoder value of [axis]

EINT R Returns the interpolation setting 2.1.7
2.2.4.2
2.3.1

EINT=[value] W Enables/disables interpolation

EO R Returns 4-bits of enable output value 2.1.2.1
2.1.2.2
2.2.1

EO=[value] W Sets 4-bits of enable output value

EO[en] R Returns bit of enable output [en]

EO[en]=[value] W Sets bit of enable output [en]

EOBOOT R Returns EO boot-up state 2.1.5
2.1.7
2.2.1

EOBOOT=[value] W Sets EO boot-up state

EP R Returns the encoder value for all 4 axes 2.6.1.2

ERC[axis] R Returns the enable status of the deflection
counter clear output

2.1.2.2
2.1.3.1.1.1
2.1.6
2.1.6.1
2.1.7
2.2.5

ERC[axis]=[value] W Enables/disables the deflection counter clear
output

ERCD R Returns the pulse delay set value 2.1.6

70 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Command R/W Description Reference
Chapter

ERCD=[value] W Sets the pulse delay value (2-bits) 2.1.6.1
2.1.7
2.1.2.2

ERCP R Returns the pulse width set value 2.1.6
2.1.6.1
2.1.7
2.1.2.2

ERCP=[value] W Sets the pulse width value (3-bits)

ESTOP W Performs an emergency stop (same as
triggering CEMG)

2.1.3.1.2

EXST R Returns the status of the external start feature 2.1.1.2
2.1.6
2.1.6.2
2.1.7

EXST=[value] W Enable/disable the external start feature

GS[sub] W Call a defined subroutine [sub] (value 0 – 31) 2.7.4

H[axis][+/-][mode] W Home [axis] in positive or negative direction
using homing mode [mode] (see Appendix A
for detailed information on homing modes)

2.2.5

HSPD R Returns the global high speed setting 2.1.4

HSPD[value] W Sets the global high speed value

HSPD[axis] R Returns the high speed setting for [axis] 2.1.4

HSPD[axis]=[value] W Sets the high speed value for [axis]

I[X target]:[Y target]:[Z
target]:[speed]

W Writes an XYZ interpolated move to buffer.
Sets each axis move target and desired move
speed.

2.3.4

ID R Returns the Commander’s ID 2.1.1.1
2.1.7 ID=[value] W Sets the Commander’s ID. Range is 00 to 99.

Use STORE command to save.

IERR R Returns the ignore limit/alarm error status 2.1.3.1.1.1
2.1.3.1.2
2.1.6
2.1.7

IERR=[value] W Sets the ignore limit/alarm status

INC W Turns on incremental coordinate mode 2.2.4.1

INP[axis] R Returns enable/disable status of positioning
complete signal for [axis]

2.1.2.2
2.1.6
2.1.7 INP[axis]=[value] W Enables/disables the positioning complete

signal for [axis]

IO R Returns the status of all configurable I/O ports
(32-bit)

2.1.3.3.1

IO=[value] W Sets the bit status of all configurable outputs

IO[port] R Returns the status of configurable I/O at [port] 2.1.3.3.1

IO[port]={0,1] W Sets the value of configurable output bit at
[port]

IOBOOT R Returns the status of all general purpose I/O at
startup (32-bit)

2.1.3.3.1
2.1.5
2.1.7 IOBOOT=[value] W Sets the value of all configurable outputs at

startup

IOCFG R Returns the current configuration of the
configurable I/O ports

2.1.3.3.1
2.1.5

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 71

Command R/W Description Reference
Chapter

IOCFG=[value] W Sets the configuration of the configurable I/O
ports

2.1.7

IOP R Returns the configurable I/O polarity setting
(2-bit logic)

2.1.3.3.1
2.1.6.3
2.1.7 IOP=[0,1] W Sets the configurable I/O polarity (2-bit logic)

J[axis][+/-] W Jogs the motor in the [+] or [-] direction 2.2.2

JDEL[axis] R Returns the maximum allowable speed change
with joystick control for [axis]

2.1.3.3.2
2.1.7
2.5.1.2 JDEL[axis]=[value] W Sets the maximum allowable speed change

with joystick control for [axis]

JENA R Returns status for joystick control 2.1.3.3.2
2.1.7
2.5.1

JENA=[value] W Enables/disables joystick control

JLIM[number] R Returns the current operating behavior limit
setting of joystick operation

2.1.3.3.2
2.1.7
2.5.1.3 JLIM[number]=[value] W Sets the operating behavior limit value of

joystick operation

JMAX[axis] R Returns the maximum voltage setting of the
input terminal for joystick operation of [axis]

2.1.3.3.2
2.1.7
2.5.1.1 JMAX[axis]=[value] W Sets the maximum terminal voltage of [axis]

for joystick operation

JMIN[axis] R Returns the minimum voltage setting of the
input terminal for joystick operation of [axis]

2.1.3.3.2
2.1.7
2.5.1.1 JMIN[axis]=[value] W Sets the minimum terminal voltage of [axis]

for joystick operation

JSPD[axis] R Returns the maximum speed setting of [axis]
for joystick operations

2.1.3.3.2
2.1.7
2.5.1.2 JSPD[axis]=[value] W Sets the maximum speed of [axis] for joystick

operations

JTOL[axis] R Returns the current dead band around mid-
voltage range of [axis] for joystick operation

2.1.3.3.2
2.1.7
2.5.1.1 JTOL[axis]=[value] W Sets the dead band range around mid-voltage

of [axis] for joystick operation

LSPD R Returns global low speed setting 2.1.4

LSPD=[value] W Sets global low speed value

LSPD[axis] R Returns low speed setting for [axis] 2.1.4

LSPD[axis]=[value] W Sets low speed value for [axis]

LT[axis]=[value] W Enables/disables latch feature 2.1.3.2.1

LTE[axis] R Returns the previously latched encoder
position

2.1.3.2.1

LTP[axis} R Returns the previously latched step position 2.1.3.2.1

LTS[axis] R Returns the current latch status 2.1.3.2.1

MM R Returns the current move mode for moves
(absolute or incremental)

2.2.4.1

MP[axis] R Returns the current manual pulse generator
position

2.1.3.1.4
2.5.2.2

MP[axis]=[values] W Sets the manual pulse generator position

MPD[axis] R Returns the divider parameter for manual
pulse generator operation

2.1.3.1.4
2.1.7

72 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Command R/W Description Reference
Chapter

MPD[axis]=[value] W Sets the divider parameter for manual pulse
generator operation

2.5.2
2.5.2.2

MPE[axis] R Returns the manual pulse generator enable
status

2.1.3.1.4
2.1.7
2.5.2 MPE[axis]=[value] W Enable/disable the manual pulse generator

MPM[axis] R Returns the multiplier parameter for manual
pulse generator operation

2.1.3.1.4
2.1.7
2.5.2
2.5.2.2

MPM[axis]=[value] W Sets the multiplier parameter for manual pulse
generator operation

MST[axis] R Returns all motor status, buffer move status,
and move mode status for [axis]

2.1.3.1.1.1
2.1.3.1.1.2
2.1.3.1.2
2.6.2.1

P[axis] R Returns the position value for [axis] 2.6.1.1

P[axis]=[value] W Sets the position value for [axis]

POL[axis] R Returns polarity parameter for [axis] (see
Table 6.9)

2.1.2.1
2.1.2.2
2.1.2.3
2.1.3.1.1.2
2.1.6
2.1.6.3
2.1.7
2.2.1
2.5.2
2.5.2.1

POL[axis]=[pol] W Sets the polarity parameter for [axis]

PP R Returns current pulse counter value of all 4
axes

2.6.1.1

PS[axis] R Returns the current pulse speed for [axis] 2.6.2.2

PWM[1-2] R Returns current PWM duty cycle setting (in %) 2.1.3.3.3

PWM[1-2]=[value] W Set the PWM duty cycle (in %)

SACTRL[prgNo]=[0-3] W Controls the standalone [prgNo]: stop(0),
start(1), pause(2), continue(3)

2.7.8

SAP R Returns the return jump line (standalone error
handling)

2.7.5

SAP[0-1] W Sets the return jump line (standalone error
handling)

SASTAT[0-3] R Returns status for standalone program. 2.7.9

SCV[axis] R Returns S-curve control status for [axis] 2.1.4
2.1.6 SCV[axis]=[0,1] W Enable/disable S-curve acceleration for [axis].

Trapezoidal accel/decel used if disabled.

SDC[axis] R Returns the configuration of the Slow Down
decel operation for [axis]

2.1.3.1.1.2
2.1.6
2.1.7 SDC[axis]=[value] W Sets the configuration for the Slow Down

decel (decel only or decel and stop) for [axis]

SDE[axis] R Status of the Slow Down decel operation for
[axis]

2.1.3.1.1.2
2.1.6
2.1.7 SDE[axis]=[value] W Enable/disable the external deceleration

feature for [axis]

SL[axis] R Returns status of StepNLoop enable for [axis] 2.1.7

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 73

Command R/W Description Reference
Chapter

SL[axis]=[value] W Enable/Disable StepNLoop feature for [axis] 2.5.3

SLA[axis] R Returns maximum attempts to complete
StepNLoop operation for [axis]

2.1.7
2.5.3

SLA[axis]=[value] W Sets maximum attempts to complete
StepNLoop operation for [axis]

SLE[axis] R Returns error range of StepNLoop operation
for [axis]

2.1.7
2.5.3

SLE[axis]=[value] W Sets error range of StepNLoop operation for
[axis]

SLOAD[prg#] R Returns the RunOnBoot parameter for [prg#] 2.1.5
2.1.7
2.7.10

SLOAD[prg#]=[value] W Sets the RunOnBoot parameter for [prg#]

SLR[axis] R Returns the StepNLoop ratio for [axis]
(ppr/cpr)

2.1.7
2.5.3

SLR[axis]=[value] W Sets the StepNLoop ratio for [axis] (ppr/cpr)

SLS[axis] R Returns StepNLoop status for [axis] 2.5.3

SLT[axis] R Returns StepNLoop tolerance for [axis] 2.1.7
2.5.3 SLT[axis]=[value] W Sets StepNLoop tolerance for [axis]

SPC[prg#] R Returns program counter for [prg#] 2.7.9

SSPD[axis]=[value] W Performs on-the-fly speed change for [axis].
Buffer must be disabled

2.4.1

SSPDM[axis] R Returns the current on-the-fly speed mode 2.4.1

SSPDM[axis]=[value] W Sets the on-the-fly speed mode

STOP W Performs ramp down to low speed and stop if
motor is moving for all axes

2.2.3

STOP[axis] W Performs ramp down to low speed and stop if
motor is moving for [axis]

STORE W Saves parameters to flash memory 2.1.1.1
2.1.3.2.2
2.1.3.3.1
2.1.5
2.1.6
2.1.7
2.2.1
2.7.6

SYNC[axis] R Returns SYNC condition and source 2.1.3.2.2

SYNC[axis]=[value] W Sets SYNC condition and source [axis]

SYNF[axis] W Disable synchronization window and
synchronization output

2.1.3.2.2

SYNMAX[axis] R Returns the current maximum value of the
Sync Pulse Window for [axis]

2.1.3.2.2

SYNMAX[axis]=[value] W Sets the maximum value of the Sync Pulse
Window for [axis]

SYNMIN[axis] R Returns the current minimum value of the
Sync Pulse Window for [axis]

2.1.3.2.2

SYNMIN[axis]=[value] W Sets the minimum value of the Sync Pulse
Window for [axis]

SYNO[axis] W Enable synchronization output 2.1.3.2.2

74 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Command R/W Description Reference
Chapter

SYNP[axis] R Returns the synchronization position value or
distance between pulses for continuous sync.

2.1.3.2.2

SYNP[axis]=[value] W Sets the synchronization position value or
distance between pulses for continuous sync.

SYNS[axis] R Returns the status of the synchronization
feature

2.1.3.2.2

SYNWF[axis] W Disables the synchronization window for [axis] 2.1.3.2.2

SYNWO[axis] W Enables the synchronization window and
synchronization output feature for [axis]

2.1.3.2.2

T[axis][newtarget] W Sets the on-the-fly target position change for
[axis]

2.4.2

V[var] R Returns the standalone [var] value 2.1.7
2.7.6 V[var]=[value] W Sets the standalone [var] value

VER R Returns the current firmware version 2.1.1.1

[axis][targetpos] W Individual move command for [axis] to
[targetpos]

2.2.4.2

X[targetX]Y[targetY]Z[target
Z]U[targetU]

W Interpolation move command (include all axes
that will be interpolated). EINT must be
enabled (1)

2.2.4.2
2.3.1

ZCNT[axis] R Returns the number of Z-index pulses to count
for [axis]. Used for relevant moves (ZMOVE
and homing routines)

2.1.7
2.2.5.1

ZCNT[axis]=[value] W Sets the Z-index count to be used for relevant
moves (ZMOVE and homing routines). Range is
1 – 16.

ZMOVE[axis][+/-] W Perform the EZ Count operation for [axis] in
positive (+) or negative (-) direction

2.2.5.1

Table 4-40 ASCII commands

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 75

4.2 Error Codes

If an ASCII command cannot be processed by the Commander core, the controller will reply with an error code. See
below for possible error responses:

Error Code Description

?Unknown Command:
[Command]

The ASCII command is not understood by the Commander core.

?Error Moving The move command could not be processed. One or more of the required axes
may be in error state or in motion.

?Error Alarm The move command could not be processed. The Alarm signal is in the on state.

?Error +Limit The move command could not be processed. The + End Limit is in the on state.

?Error -Limit The move command could not be processed. The - End Limit is in the on state.

?Error ESTOP The move command could not be processed. The EMG signal is in the on state.

?Error SNL The move command could not be processed. The StepNLoop control is in error.

?Invalid Index The Index number is invalid

?Program Error The command cannot be processed because a standalone program is in error
state.

?Sub not Initialized Call to a subroutine using the GS command is not valid because the specified
subroutine has not been defined.

?Buffer Full Move cannot be added to a buffer register because all registers are full.

?Buffer Disabled Buffer command is not valid because buffer mode is disabled.

?Buffer Enabled SSPD command could not be processed because buffer mode is enabled.

?SSPD Error SSPD command cannot be processed because the SSPD mode is not defined or
out of range. S-curve should also be disabled.

?Override Failed Override operation failed

Table 4-41

76 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

4.3 Examples of command control from a PC

The following examples are provided to assist your understanding. Although they were produced with the utmost
care, if you find any points that are unclear, wrong, or have inadequate descriptions, please let us know.

For more examples please refer to the command refence.

4.3.1 Start and stop of jog move

Summary of operation

Set the speed of the X-axis movement and turn on excitation. After that, start the movement of the X-axis in
the negative direction. After a while, decelerate and stop the axis.

Program code

cmdStr = "LSPDX=500"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Starting speed of X-axis set to 500 pps

cmdStr = "HSPDX=5000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Moving speed of X-axis set to 5,000 pps

cmdStr = "ACCX=200"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Accel time of X-axis set to 200 ms

cmdStr = "DECX=200"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Decel time of X-axis set to 200 ms

cmdStr = "EO1=1"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Enable X-axis
cmdStr = "JX−"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’Start moving in the (−) direction

cmdStr = "STOPX"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Decelerate and stop

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 77

4.3.2 Position Move

Summary of operation

Set the global moving speed and turn on the excitations of X- and Y-axes. Set positioning coordinates to
absolute mode. Move the X-axis to position −20,000 and Y-axis to position 15,000.

Program code

cmdStr = "LSPD=500"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Starting speed set to 500 pps (Global)

cmdStr = "HSPD=5000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Moving speed set to 5,000 pps (Global)

cmdStr = "ACC=200"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Accel time set to 200 ms (Global)

cmdStr = "DEC=200"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Deceleration time set to 200 ms (Global)

cmdStr = "EO=3"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Enable X and Y-axis

cmdStr = "ABS"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Set position coordinate mode to Absolute
cmdStr = "X−20000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’Start moving the X-axis to the position of
−20,000

cmdStr = "Y15000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’Start moving the Y-axis to the position of
15,000.

78 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

4.3.3 Obtaining and clearing the counter value

Summary of operation

Read and display the command pulse and feedback pulse counter on the X-axis. The counter value can be
cleared only when the axis is normally stopped (stopped without error). Read the counter value in a timer
event.

Program code

cmdStr = "PX"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’Obtain the command pulse counter value
on X-axis

OutplsX.Text = replyStr ’Display the command pulse counter value

cmdStr = "EX"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’Obtain the feedback pulse counter value on
X-axis

FeedbackX.Text = replyStr ‘Display the feedback counter value

cmdStr = "MSTX"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’Obtain the status value of X-axis

mStatusX.Text = replyStr ‘Display the status value for X-axis

Execute the above process repeatedly in the timer event

If mStatusX.Text = "0" Then ‘Does X-axis stop normally?

cmdStr = "PX=0"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’X-axis command pulse counter clear

cmdStr = "EX=0"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’X-axis feedback pulse counter clear

End If

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 79

4.3.4 Homing Operation

Summary of operation

Set the Y-axis moving speed and enable axis. Then, start the Y-axis homing operation in the negative direction
using homing mode 1.

Program Code

cmdStr = "LSPDY=500"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Starting speed of Y-axis set to 500 pps

cmdStr = "HSPDY=5000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Moving speed of Y-axis set to 5,000 pps

cmdStr = "ACCY=200"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Accel time of Y-axis set to 200 ms

cmdStr = "DECY=200"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Decel time of Y axis set to 200 ms

cmdStr = "EO2=1"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr ‘Enable Y-axis

cmdStr = "H−1"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’Start the homing operation of Y-axis

80 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

4.3.5 Linear interpolation operation

Summary of operation

Set global moving speed and enable the X- and Y-axes. Set the positioning coordinate mode to absolute.
Execute the linear interpolation operation, moving the X-axis to position −20,000 and the Y-axis to position
15,000.

Program code

cmdStr = "LSPD=500"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Starting speed set to 500 pps (Global)

cmdStr = "HSPD=5000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Moving speed set to 5,000 pps (Global)

cmdStr = "ACC=200"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Accel time set to 200 ms (Global)

cmdStr = "DEC=200"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Decel time set to 200 ms (Global)

cmdStr = "EO=3"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Enable X and Y-axes

cmdStr = "ABS"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Set position coordinate mode to absolute

cmdStr = "EINT=1"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Interpolation operation enabled

cmdStr = "X−20000Y15000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’ Start interpolation operation of X and Y-
axes

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 81

4.3.6 Circular Interpolation Operation

Summary of operation

Set global moving speed and enable the X- and Y-axes. Set positioning coordinate mode to absolute. Execute a
circular interpolation move. The center coordinates of circle are (1000, 0) and the rotation direction
clockwise.

Program code

cmdStr = "LSPD=500"
result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Starting speed set to 500 pps (Global)

cmdStr = "HSPD=5000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Moving speed set to 5,000 pps (Global)

cmdStr = "ACC=200"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Accel time set to 200 ms (Global)

cmdStr = "DEC=200"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Decel time set to 200 ms (Global)

cmdStr = "EO=3"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’Enable X- and Y-axes

cmdStr = "ABS"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Set position coordinate mode to absolute

cmdStr = "EINT=1"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’Interpolation operation enabled

cmdStr = "CIRXYP1000:0"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’Start interpolation operation of X and Y-
axes

82 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

4.3.7 On-the-fly speed change

Summary of operation

Change the X-axis speed at 50,000 pps to 70,000 pps during motion.

Program code

cmdStr = "LSPDX=1000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Starting speed of X-axis set to 500 pps

cmdStr = "HSPDX=50000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Moving speed of X-axis set to 50,000 pps

---omitted steps---

cmdStr = "JX−"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’Start moving in the − direction

cmdStr = "SSPDM=2"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Double the speed range

cmdStr = "SSPD=70000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Update speed to 70,000 pps

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 83

4.3.8 Synchronization Function

Summary of operation

When the X-axis moves to position 5,000, turn on synchronization signal DO1/SYNCx.

Program code

cmdStr = "LSPDX=100"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Starting speed of X-axis set to 100 pps

cmdStr = "HSPDX=1000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Moving speed of X-axis set to 1,000 pps

---omitted steps---

cmdStr = "SYNCX=1"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Set X-axis sync condition

cmdStr = "SYNPX=5000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Set X-axis comparison data value to 5,000

cmdStr = "SYNO"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Sync output configuration enabled
cmdStr = "X5000"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ‘Move X-axis to position 5,0

‘DO1/SYNCx will be on when movement is
completed

84 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

4.3.9 Control of general purpose input/output

Summary of operation

Turn ON/OFF general-purpose output 1 in synchronization with general-purpose input 1.

Program code

cmdStr = "IO5"

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr) ’Read status of general-purpose input 1

If replyStr = "1" Then

cmdStr = "IO19=1" ’It is ON

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr)

Else

cmdStr = "IO19=0” ’It is not ON

result = SendReceiveCommanderHID(devHandle, cmdStr, replyStr)

End If

Note: The state of the general-purpose input must be read repeatedly

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 85

5.0 Standalone Language Specification
Important Note: All the commands described in this section are standalone language commands and are not
analogous to ASCII commands. Refer to Section 4.0 ASCII Language Specification for details regarding ASCII
commands.

For more detailed information on any command please refer to the command refence.

5.1 Using A-Script programming interface

5.1.1 Program Development

A-Script is a BASIC-like language that can help the programmer quickly write programs for motion control projects,
including conditional statements (IF, ELSE, ELSEIF, ENDIF, WHILE, ENDWHILE), subroutines, and mathematical and
logical expressions (=, !=, <, >, <=, >=, +, -, *, /). The programming syntax uses a series of standalone commands
(listed later in this section) that allow the programmer to build single and multithread programs that can be
compiled and run in the controller. By writing lines of code using the set of commands, set-up, control of motion,
management of inputs and outputs, and error handling can all be addressed. A basic program consists of a start
line (PRG xx) and an end line (END). All code is written between the PRG and END lines. Use the utility software to
write, compile, download, upload, and execute programs.

5.1.2 Subroutines

Subroutines are program snippets that can be accessed based on the needs of the programmer and are used in
conjunction with logic statements related to motor actions or status of inputs and outputs. Up to 32 (0-31)
subroutines can be called upon. See section 2.7.4 Subroutines for more information.

5.1.3 Error Handling

Subroutine 31 is used for error handling. See section 2.7.5 Error Handling for more information.

5.1.4 Multi-thread

The Commander core utilizes four independent processors that can run simultaneously, making it possible to run
multiple programs at the same time with or without coordination. See section 2.7.3 Multi-thread for more
information.

5.1.5 Compiling, Saving, Downloading

Standalone programs can be written to the Commander core using the Windows GUI. Refer to the Software
Manual for details. Once a standalone program is written by the user, it is then compiled, saved for future
reference and downloaded to the Commander core. Each line of written standalone code creates 1-4 assembly
lines of code after compilation. See the software manual for more information.

86 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

5.2 Standalone Command Set

Command R/W Description Reference
Chapter

; - Comments out any text following
semicolon in the same line

ABORT W Immediately stops all motion for all axes 2.2.3

ABORT[axis] W Immediately stops motion in [axis]

ABS W Turns on absolute position coordinate
mode

2.2.4.1

ACC R/W Returns/sets global acceleration value in
ms

2.1.4

ACC[axis] R/W Returns/sets [axis] acceleration value in
ms

AI[ch] R Returns analog input status for [ch] in mV 2.1.3.3.2

ARC[A1][A2]N[C1]:[C2]:[Ɵ] W Arc interpolation with axes [A1], [A2],
centers at [C1], [C2], CCW direction to [Ɵ]

2.3.2.1

ARC[A1][A2]P[C1]:[C2]:[Ɵ] W Arc interpolation with axes [A1], [A2],
centers at [C1], [C2], CW direction to [Ɵ]

ARCTN[Cx]:[Cy]:[θ]:[pos] W XY arc interpolation, centers at [C1], [C2],
CCW direction to [Ɵ] with Z linear
interpolation to [pos]

2.3.3

ARCTP[Cx]:[Cy]:[θ]:[pos] W XY arc interpolation, centers at [C1], [C2],
CW direction to [Ɵ] with Z linear
interpolation to [pos]

BUFOFF W Disable buffered move 2.3.4

BUFON W Enable buffered move 2.3.4

CIR[A1][A2]N[C1]:[C2] W Circular interpolation with axes [A1], [A2],
centers at [C1], [C2], CCW direction

2.3.2

CIR[A1][A2]P[C1]:[C2] W Circular interpolation with axes [A1], [A2],
centers at [C1], [C2], CW direction

CIRTN[C1]:[C2]:[pos] W XY circular interpolation, centers at [C1],
[C2], CCW direction with Z linear
interpolation to [pos]

2.3.3

CIRTP[C1]:[C2]:[pos] W XY circular interpolation, centers at [C1],
[C2], CW direction with Z linear
interpolation to [pos]

DEC R/W Returns/sets the global deceleration value
in ms

2.1.4

DEC[axis] R/W Returns/sets [axis] deceleration value in
ms

DELAY W Sets delay in ms

DI R Return status of digital inputs. 4-bit 2.1.3.2.1

DI[1-4] R Get individual bit status of digital inputs.
Will return [0,1].

2.1.3.2.1

DO R/W Returns/sets 4-bits of general-purpose
digital outputs

2.1.3.2.2

DO[1-4] R/W Returns/sets bit status of general digital
output [1-4]

2.1.3.2.2

E[axis] R/W Returns/sets the encoder value of [axis] 2.6.1.2

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 87

Command R/W Description Reference
Chapter

ECLEAR[axis] W Clear any motor status errors. 2.1.3.1.1.1
2.1.3.1.1.2
2.1.3.1.2
2.6.2.3
2.7.5

EINT R/W Returns/sets the interpolation
Enable/Disable status

2.1.7
2.2.4.2
2.3.1

EO R/W Returns/sets 4-bits of enable output value
for all axes

2.1.2.1
2.1.2.2
2.2.1 EO[1-4] R/W Returns/sets of enable output value for

[1-4]

GOSUB[0-31] - Executes subroutine [0-31] 2.7.4

HOME[axis][+/-][mode] W Home [axis] in positive or negative [+/-]
direction using homing mode [mode] (see
Appendix A: Homing Mode Actions)

2.2.5

HSPD R/W Returns/sets the global high-speed setting 2.1.4

HSPD[axis] R/W Returns/sets the high-speed setting for
[axis]

IF
ELSEIF
ELSE
ENDIF

-

Executes the instruction following the IF
statement when condition is true. Execute
the instruction following the next ELSE or
ELSEIF statement when the condition is
false. When all conditions are false,
continue executing program after ENDIF.
The following operands are used in the
conditional IF statement: =, >, <, > =,
<=, !=

2.7.2

INC W Turns on incremental coordinate mode 2.2.4.1

IO R/W Returns/sets the status of all configurable
I/O ports (32-bit)

2.1.3.3.1

IO[index] R/W Returns/sets the status of configurable
I/O at [index]

2.1.3.3.1

ISTART W Start processing the buffer (buffer must
be enabled)

2.3.4

JOG[axis][+/-] W Jogs the [axis] in the [+] or [-] direction
using the HSPD setting

2.2.2

JOYDEL[axis] W Returns the maximum allowable speed
change with joystick control for [axis]

2.1.3.3.2
2.5.1.2

JOYENA R/W Returns/sets the status for joystick control 2.1.3.3.2
2.5.1

JOYHS[axis] R/W Returns/sets the maximum speed setting
of [axis] for joystick operations

2.1.3.3.2
2.5.1.2

LSPD R/W Returns/sets global low speed setting 2.1.4

LSPD[axis] R/W Returns/sets low speed setting for [axis] 2.1.4

MST[axis] R Returns all motor status, buffer move
status, and move mode status for [axis]

2.1.3.1.1.1
2.1.3.1.1.2
2.1.3.1.2
2.6.2.1

P[axis] R/W Returns/sets the position value for [axis] 2.6.1.1

88 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Command R/W Description Reference
Chapter

PRG[0-3]
END

- Defines the first and last line of a
standalone program [0-3].

2.7.1

PS[axis] R Returns the current pulse speed for [axis] 2.6.2.2

SL[axis] R/W Returns/Sets enable/disable of StepNLoop
for [axis]

2.5.3

SLS[axis] R Returns StepNLoop status for [axis] 2.5.3

SR[0-3] W Controls standalone program [0-3]. Use
command to stop, start, pause, continue.

2.7.8

SSPD[axis] W Performs on-the-fly speed change for
[axis]. Buffer must be disabled.

2.4.1

SSPDM[axis] W Sets the on-the-fly speed mode for [axis] 2.4.1

STOP W Performs ramp down to low speed and
stop if motor is moving for all axes

2.2.3

STOP[axis] W Performs ramp down to low speed and
stop if motor is moving for [axis]

STORE W Saves parameters to flash memory 2.1.1.1
2.1.3.2.2
2.1.3.3.1
2.1.5
2.1.6
2.1.7
2.2.1
2.7.6

SUB[0-31]
ENDSUB

- Used to define the first and last line of a
Subroutine [0-31]

2.7.4

SYNCFG[axis] R/W Returns/sets SYNC condition and source
[axis]

2.1.3.2.2

SYNOFF[axis] W Disable synchronization window and
output for [axis]

2.1.3.2.2

SYNON[axis] W Enable synchronization output for [axis] 2.1.3.2.2

SYNPOS[axis] R/W Sets/Returns the synchronization position
value or distance between pulses for
continuous sync of [axis].

2.1.3.2.2

SYNSTAT[axis] W Returns the status of the synchronization
feature for [axis]

2.1.3.2.2

V[index] R/W Returns/sets the variable [index] value 2.7.6

WAIT[axis] W Waits for completion of [axis] motion
before next command is executed

WHILE
ENDWHILE

- Continue executing the program after the
WHILE statement when the conditional
statement is true. Repeat until WHILE
condition is false, and then execute
program after ENDWHILE. Conditional
operands available include: =, >, <, >=,
<=, !=

2.7.2

X[position] W Individual move command for X-axis to
[position]

2.2.4.2

Y[position] W Individual move command for Y-axis to
[position]

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 89

Command R/W Description Reference
Chapter

Z[position] W Individual move command for Z-axis to
[position]

U[position] W Individual move command for U-axis to
[position]

X[pos]Y[pos]Z[pos]U[pos] W Interpolation move command (include all
axes that will be interpolated). EINT must
be enabled (1).

2.2.4.2
2.3.1
2.3.4

ZMOVE[axis][+/-] W Perform the EZ Count operation. Moves
[axis] the number of Z-index pulses
specified by ZCNT in positive (+) or
negative (-) direction before stopping.

2.2.5.1

Table 5-42 A-Script standalone commands

90 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

5.3 Error Codes

Error Code Description Incorrect Code Example

Unknown Error Command cannot be recognized PRGA

BIT Error Specified bit does not exist DO10=1

Token Error Syntax error DELAY=V1+200

= Error Incorrect assignment formula V2+1=V3

Assignment Error Invalid value specified V1= ABS

Operation Argument Error Invalid command specified V1=V2+ABS

Error not Number of Var Invalid specification method DO=PX

Var Range Error Exceeds the defined variable range V200=1

Missing = Assignment operator ‘=’ cannot be found HSPD*1000

Error GOSUB Specified value is outside the range for GOSUB GOSUB900

Error SUB Number Subroutine number is not valid GOSUB DI1

Error SUB Specified value is outside the range for SUB SUB5000

Error ENDSUB ENDSUB is missing SUB 1
…
ENDSUB

Error PRG Specified value is outside the range for PRG PRG200

Error PRG Number Program number is not valid PRG XI3

Missing END END for PRG missing PRG 0
…
END

Missing ENDWHILE ENDWHILE for WHILE missing WHILE 1=1
…
ENDWHILE

Missing ENDIF ENDIF for IF missing IF 1=1
…
ENDIF

Error Other syntax errors V1==V2
Table 5-43 A-Script error codes

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 91

5.4 Example Standalone Programs

The following examples are provided to assist your understanding. Although they were produced with the utmost
care, if you find any points that are unclear, wrong, or have inadequate descriptions, please let us know.

For more examples please refer to the command refence.

5.4.1 Standalone Example Program 1 – Single Thread

Summary of operation

Set high and low speed and move the X-axis to 1000 and back to 0.

Program code

PRG 0 ;Program start line, program 0
 HSPD=20000 ;Set high speed to 20,000 pulses/sec
 LSPD=1000 ;Set low speed to 1,000 pulses/sec
 ACC=300 ;Set acceleration to 300 msec
 EO=1 ;Enable the X-axis
 X1000 ;Move X-axis to 1,000
 WAITX ;Wait for X-axis move to complete
 X0 ;Move X-axis to zero
 WAITX ;Wait for X-axis move to complete
END ;End of program 0

5.4.2 Standalone Example Program 2 – Single Thread with buffer

Summary of operation

Create a contouring profile for the X-axis using buffer move function.

Program code

PRG 1 ;Program start line, program 1
BUFON ;Enable buffer move

; Load Buffer
HSPD=100 ;Set high speed to 100 pulses/sec
X1000Y100Z100 ;I:1000:100:100:100
HSPD=200 ;Set high speed to 200 pulses/sec
X2000Y100Z100 ;I:2000:100:100:200
HSPD=300 ;Set high speed to 300 pulses/sec
X3000Y100Z100 ;I:3000:100:100:300
HSPD=400 ;Set high speed to 400 pulses/sec
X4000Y100Z100 ;I:4000:100:100:400
HSPD=500 ;Set high speed to 500 pulses/sec
X5000Y100Z100 ;I:5000:100:100:500
HSPD=400 ;Set high speed to 400 pulses/sec
X3000Y100Z100 ;I:3000:100:100:400
HSPD=300 ;Set high speed to 300 pulses/sec
X0Y100Z100 ;I:0:100:100:300

; Start buffered move
ISTART ;BSTART
DELAY=100 ;Delay 0.1 seconds
WAITX ;Wait until axis X motion has stopped

BUFOFF ;Disable buffer move
END ;End of program 1

92 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

5.4.3 Standalone Example Program 3 – Single Thread

Summary of operation

Move the X-axis back and forth indefinitely between position 1000 and 0.

Program code

PRG 1 ;Program start line, program 1
HSPD=20000 ;Set the high speed to 20000 pulses/sec
LSPD=1000 ;Set the low speed to 1000 pulses/sec
ACC=300 ;Set the acceleration to 300 msec
EO=1 ;Enable the motor power
WHILE 1=1 ;Forever loop
 X0 ;Move to zero
 WAITX ;Wait for X-axis move to complete
 X1000 ;Move to 1000
 WAITX ;Wait for X-axis move to complete
ENDWHILE ;Go back to WHILE statement

END ;End of program 1

5.4.4 Standalone Example Program 4 – Single Thread

Summary of operation

Move the X-axis back and forth 10 times between position 1000 and 0.

Program code

PRG 1 ;Program start line, program 1
 HSPD=20000 ;Set high speed to 20,000 pulses/sec
 LSPD=1000 ;Set low speed to 1,000 pulses/sec
 ACC=300 ;Set acceleration to 300 msec
 EO=1 ;Enable the X-axis
 V1=0 ;Set variable 1 to 0
 WHILE V1<10 ;Loop while variable 1 is less than 10
 X0 ;Move X-axis to zero (0)
 WAITX ;Wait for X-axis move to complete
 X1000 ;Move X-axis to 1,000
 WAITX ;Wait for X-axis move to complete
 V1=V1+1 ;Increment variable 1 by 1
 ENDWHILE ;Go back to WHILE statement
END ;End of program 1

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 93

5.4.5 Standalone Example Program 5 – Single Thread

Summary of operation

Move the X-axis back and forth between position 1000 and 0 only if the digital input 1 is turned on.

Program code

PRG 2 ;Program start line, program 2
 HSPD=20000 ;Set high speed to 20,000 pulses/sec
 LSPD=1000 ;Set low speed to 1,000 pulses/sec
 ACC=300 ;Set acceleration to 300 msec
 EO=1 ;Enable the X-axis
 WHILE 1=1 ;Forever loop
 IF DI1=1 ;If digital input 1 is on, execute the following commands
 X0 ;Move X-axis to zero
 WAITX ;Wait for X-axis move to complete
 X1000 ;Move X-axis to 1,000
 WAITX ;Wait for X-axis move to complete
 ENDIF ;End of the IF loop
 ENDWHILE ;Go back to WHILE Statement
END ;End of program 2

5.4.6 Standalone Example Program 6 – Single Thread with subroutine

Summary of operation

Using a subroutine, increment the X-axis by 1000 whenever the DI1 rising edge is detected.

Program code

PRG 0 ;Program start line, Program 0
HSPD=20000 ;Set high speed to 20,000 pulses/sec
LSPD=1000 ;Set low speed to 1,000 pulses/sec
ACC=300 ;Set acceleration to 300 msec
ABS ;Set move mode to absolute mode
EO=1 ;Enable the X-axis
V1=0 ;Set variable 1 to 0
WHILE 1=1 ;Forever loop
 IF DI1=1 ;If digital input 1 is on, execute the following commands
 GOSUB 1 ;Execute subroutine 1
 ENDIF ;End of the IF loop
ENDWHILE ;Go back to WHILE statement

END ;End of program 0

SUB 1 ;Subroutine start line, subroutine 1
 XV1 ;Move X-axis to V1 target position
 WAITX ;Wait for X-axis move to complete
 V1=V1+1000 ;Increment V1 by 1,000
 WHILE DI1=1 ;Wait until the DI1 is turned off (prevent multiple increments)
 ENDWHILE ;Go back to WHILE statement
ENDSUB ;End of subroutine 1

94 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

5.4.7 Standalone Example Program 7 – Single Thread with error handling

Summary of operation

If digital input 1 is on, move to position 2000. If digital input 2 is on, move to position 4000. If digital input 3 is
on, move to 6000. If digital input 4 is on, home the motor in negative direction, mode 0. Use digital output 1 to
indicate that the motor is moving or not moving. Also, create an error handling subroutine utilizing SUB 31 that
clears the error and then returns the motor to position zero.

Program code

PRG 2 ;Start program 2
HSPD=15000 ;Set high speed to 15,000 pulses/sec
LSPD=500 ;Set low speed to 500 pulses/sec
ACC=300 ;Set acceleration to 300 msec
EO=1 ;Enable the X-axis
WHILE 1=1 ;Forever loop
 IF DI1=1 ;If digital input 1 is on
 X2000 ;Move X-axis to 1000
 ELSEIF DI2=1 ;If digital input 2 is on
 X4000 ;Move X-axis to 4000
 ELSEIF DI3=1 ;If digital input 3 is on
 X6000 ;Move X-axis to 6000
 ELSEIF DI4=1 ;If digital input 4 is on
 HOMEX-0 ;Home X-axis with mode 0 in the negative direction
 ENDIF ;End of the IF loop
 V1=MSTX ;Store the X-axis status to variable 1
 V2=V1&7 ;Get first 3 bits
 IF V2!=0 ;If one of first 3 bits is high (X-axis moving)
 DO1=1 ;Turn on digital output 1
 ELSE ;Else if first 3 bits are low (X-axis idle)
 DO1=0 ;Turn off digital output 1
 ENDIF ;End of the IF loop
ENDWHILE ;Go back to WHILE statement

END ;End of program 2

SUB 31 ;Subroutine start line, subroutine 31 (error handling subroutine)
 ECLEARX ;Clear the current error in X-axis
 X0 ;Return X-axis to position 0
 DO2=1 ;Turn on digital output 2
ENDSUB ;End of subroutine 31

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 95

5.4.8 Standalone Example Program 8 – Multi-thread

Summary of operation

Program 0 will continuously move the motor between positions 0 and 1000. Simultaneously, program 1 will
control the status of program 0 using digital inputs.

Program code

PRG 0 ;Start program 0
HSPD=20000 ;Set speed to 20,000 pulses/sec
LSPD=500 ;Set speed to 500 pulses/sec
ACC=500 ;Set acceleration to 500 msec
WHILE 1=1 ;Forever loop

X0 ;Move X-axis to position 0
WAITX ;Wait for X-axis move to complete
X1000 ;Move X-axis to position 1,000
WAITX ;Wait for X-axis move to complete

ENDWHILE ;Go back to WHILE statement

END ;End program 0

PRG 1 ;Start program 1
WHILE 1=1 ;Forever loop
 IF DI1=1 ;If digital input 1 is triggered
 ABORTX ;Stop movement in X-axis
 SR0=0 ;Stop program 0
 ELSE ;If digital input 1 is not triggered
 SR0=1 ;Run program 0
 ENDIF ;End of the IF loop
ENDWHILE ;Go back to WHILE statement

END ;End program 1

96 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

5.4.9 Standalone Example Program 9 – Multi-thread with subroutine

Summary of operation

Program 0 will continuously move the X-axis between positions 0 and 1000. Simultaneously, program 1 will
monitor the communication time-out parameter and trigger digital output 1 if a time-out occurs. Program 1 will
also stop all motion, disable program 0 and then re-enable it after a delay of 3 seconds when an error occurs.

Program code

PRG 0 ;Start program 0
HSPD=1000 ;Set high speed to 1,000 pulses/sec
LSPD=500 ;Set low speed to 500 pulses/sec
ACC=500 ;Set acceleration to 500 msec
EO=1 ;Enable X-axis
GOSUB 1 ;Go to Subroutine 1
WHILE 1=1 ;Forever loop

 X0 ;Move X-axis to position 0
 WAITX ;Wait for X-axis move to complete
 X1000 ;Move X-axis to position 1000
 WAITX ;Wait for X-axis move to complete

ENDWHILE ;Go back to WHILE statement
END ;End program 0

PRG 1 ;Start program 1
 WHILE 1=1 ;Forever loop
 V1=MSTX&1024 ;Get bit alarm error variable
 IF V1 = 1024 ;If alarm error is on
 SR0=0 ;Stop program 0
 ABORTX ;Abort X-axis motion
 DO=0 ;Set digital output 0 to 0 (off)
 DELAY=3000 ;Delay 3 seconds
 ECLEARX ;Clear alarm error
 SR0=1 ;Turn program 0 on
 DO=1 ;Set digital output 0 to 1 (on)
 ENDIF ;End of the IF loop
 ENDWHILE ;Go back to WHILE statement
END ;End program

SUB 1 ;Subroutine start line, subroutine 1
 HOMEX-6 ;Home X-axis with mode 6 in the negative direction
 WAITX ;Wait for X-axis move to complete
ENDSUB ;End of subroutine 1

SUB 31 ;Subroutine start line, subroutine 31 (error handling subroutine)
 ECLEARX ;Clear the current error in X-axis
 X0 ;Return X-axis to position 0
 DO2=1 ;Turn on digital output 2
ENDSUB ;End of subroutine 31

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 97

5.4.10 Standalone Example Program 10 – Multi-thread with subroutine

Summary of operation

Program 1 will home axis X and Y, then will continuously move the X and Y-axis and control a laser pointer to
draw circle, line, then an Arc. Simultaneously, program 3 will control the status of general-purpose digital
outputs to control LED’s. Subroutine 1 turns off a laser pointer, Subroutine 2 turns on the laser pointer,
Subroutine 7 enables and homes the X and Y-axis, and Subroutine 31 handles errors.

Program code

PRG 1 ;Start program 1
 GOSUB 1 ;Go to subroutine 1, Turn off laser pointer
 GOSUB 7 ;Go to subroutine 7, Enable and Home X/Y
 WHILE 1=1 ;Forever loop
; Draw Circle
 X85610Y562530 ;Move to start point for Circle
 WAITX ;Wait for X-axis move to complete

GOSUB 2 ;Go to subroutine 2, Turn on laser pointer
CIRXYP487659:562431 ;Moves XY in a CW circle around points X487659 Y562431

 WAITX ;Wait for X-axis move to complete
 GOSUB 1 ;Go to subroutine 1, Turn off laser pointer
; Draw Line
 X100000Y100000 ;Move to start point of Line
 WAITX ;Wait for X-axis move to complete
 GOSUB 2 ;Go to subroutine 2, Turn on laser pointer
 X909000Y642390 ;Linear XY move from X100000 Y100000 to X909000 Y642390
 WAITX ;Wait for X-axis move to complete
 GOSUB 1 ;Go to subroutine 1, Turn off laser pointer
; Draw Arc
 X430589Y20623 ;Move to start point for Arc
 WAITX ;Wait for X-axis move to complete
 GOSUB 2 ;Go to subroutine 2, Turn on laser pointer
 ARCXYN288899:267403:95000 ;270dig arc of XY CCW around points X288899 Y267403
 WAITY ;Wait for Y-axis move to complete
 GOSUB 1 ;Go to subroutine 1, Turn off laser pointer
 ENDWHILE ;Go back to WHILE statement
END ;End program 1

PRG 3 ;Start program 3
 WHILE 1 = 1 ;Forever loop
 IO=64 ;General-purpose output 7 on.
 DELAY=700 ;Delay 0.7 seconds
 IO=80 ;General-purpose output 5 and 7 on.
 DELAY=700 ;Delay 0.7 seconds
 IO=84 ;General-purpose output 3, 5, and 7 on.
 DELAY=700 ;Delay 0.7 seconds
 IO=85 ;General-purpose output 1, 3, 5, and 7 on.
 DELAY=700 ;Delay 0.7 seconds
 V30=0 ; Set variable 30 to 0.
 WHILE V30 < 10 ;Loop while variable 30 is less than 10
 IO = 85 ;General-purpose output 1, 3, 5, and 7 on.
 DELAY=50 ;Delay 0.05 seconds
 IO = 0 ;All general-purpose outputs off.
 DELAY=50 ;Delay 0.05 seconds

98 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

 V30=V30+1 ;Increment variable 30 by 1
 ENDWHILE ;Go back to WHILE statement
 ENDWHILE ;Go back to WHILE statement
END ;End Program 3

SUB 1 ;Subroutine start line, subroutine 1
 DO2=0 ;DO 2 off to turn off Laser pointer
 DELAY=10 ;Delay 0.01 seconds to stabilize laser
ENDSUB ;End of subroutine 1

SUB 2 ;Subroutine start line, subroutine 2
 DO2=1 ;DO 2 on to turn on Laser pointer
 DELAY=10 ;Delay 0.01 seconds to stabilize laser
ENDSUB ;End of subroutine 2

SUB 7 ;Subroutine start line, subroutine 7
; Enable motors

HSPD=15000 ;Set high speed to 15,000 pulses/sec
LSPD=500 ;Set low speed to 500 pulses/sec
ACC=100 ;Set acceleration to 100 msec
EO=3 ;Enable X and Y-axis

; Home axis
HOMEX-6 ;Home X-axis with mode 6 in the negative direction
WAITX ;Wait for X-axis move to complete
HOMEY-6 ;Home Y-axis with mode 6 in the negative direction
WAITY ;Wait for Y-axis move to complete

; Move X/Y to Start Position
HSPD=35000 ;Set high speed to 15,000 pulses/sec
X500000Y500000 ;Move X and Y-axis to X500,000 Y500,000
WAITX ;Wait for X-axis move to complete

ENDSUB ;End of subroutine 7

SUB 31 ;Subroutine start line, subroutine 31 (error handling)
 SR1=0 ;Stop program 1
 SR3=0 ;Stop program 3
 ABORT ;Abort all-axis motion
 ECLEARX ;Clear the current error in X-axis
 ECLEARY ;Clear the current error in Y-axis
 IO=0 ;All general-purpose outputs off.
 DO2=0 ;DO 2 off to turn off Laser pointer
ENDSUB ;End of subroutine 7

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 99

6.0 Dimensions and Connectivity

6.1 Dimensions

All dimensions in mm. Tolerance 0.1

Figure 6-41

100 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

6.2 Connectivity

The Commander core uses 3 x 50-pin connectors with 1.27mm pitch to allow access to all signals. In this manual –
when viewing from the bottom, with the three sets of pins, left, right and bottom – we will refer to the left set of
pins as CON1, the right set as CON2, and the bottom set as CON3. For the purpose of simplicity, in this manual, all
pin numbers are referred to by CON number then pin number in the set. For example, pin 3 on CON1 will be
referred to as pin 1-3, whereas pin 25 on CON3 will be referred to as pin 3-25.

Recommended Mating Connector Information

Manufacturer: FCI

Part Number: 20021311-00050T4LF

Other compatible 1.27mm connectors can be used. Figure 6-42 shows the Pin 1 locations.

6.2.1 Pinout

As viewed from the bottom looking at the unit.

Figure 6-42

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 101

6.1.1.1 Pin Assignment Diagram

As viewed from the top looking through the device. (As laid out on PCB)

Figure 6-43

102 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

6.1.1.2 Pin Descriptions by Functions

Function
Signal
Name

Terminal
Number

Input/Output Logic Description

Power

Ground

GND 1-49, 1-50,
2-49, 2-50,
3-49, 3-50

Power Source Common connection for power
supply.
Make sure to connect all terminals.

Voltage

VDD 1-1, 1-2,
2-1, 2-2,
3-1, 3-2

Power Source Supply +3.3 VDC power.
The allowable power supply range
is +3.3 VDC ±10%.
Make sure to connect all terminals.

Reset

/RST 2-48 Input Negative Input reset signal. An external
switch can be installed for soft
reset of the Commander. To
perform a soft reset, hold /RST
LOW for at least 0.5ms.

Power
Indicator

LED 2-11 Output Negative LED power indicator. Also used to
show firmware bootloading status.

Motion

Pulse

PULx
PULy
PULz
PULu

1-3
1-9
1-15
1-21

Output Negative# Output command pulses for
controlling a motor.
When common pulse mode is
selected:
 Outputs pulses and the feed
direction is determined by DIR
signals.
When two-pulse output mode is
selected:
 Outputs pulses in the positive (+)
direction.
When 90 phase difference mode is
selected:
 Outputs DIR signals and 90 phase
difference signals.
The output logic can be changed
using software.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 103

Function
Signal
Name

Terminal
Number

Input/Output Logic Description

Direction

DIRx
DIRy
DIRz
DIRu

1-4
1-10
1-16
1-22

Output Negative# Output command pulses for
controlling a motor, or outputs
direction signal.
When common pulse mode is
selected:
 Outputs a direction signal.
When two-pulse output mode is
selected:
 Outputs pulses in the negative (-)
direction.
When 90 phase difference mode is
selected:
 Outputs DIR signals and 90 phase
difference signals.
The output logic can be changed
using software

Enable

EOx
EOy
EOz
EOu

1-5
1-11
1-17
1-23

Output Negative# Outputs a motor enable signal to
the driver.
Output logic can be changed using
software.

In-Position

INPx
INPy
INPz
INPu

1-8
1-14
1-20
1-28

Input U Negative# Input the position complete signal
from servo driver (in-position
signal).
Input logic can be changed using
software.

Servo Alarm

ALMx
ALMy
ALMz
ALMu

1-6
1-12
1-18
1-24

Input U Negative# Input servo alarm signal. When this
signal is ON, motion of an axis
stops immediately, or will
decelerate and stop.
The input logic can be changed
using software.

Error Clear

ERCx
ERCy
ERCz
ERCu

1-7
1-13
1-19
1-25

Output Negative# Outputs a servo error clear
(deflection counter clear) signal to
a servo driver as a pulse. The
output logic and pulse width can be
changed using software. A LEVEL
signal output is also available.

Safety

Simultaneous
Start

/CSTA 2-22 Input/Output Negative Input/output terminal for
simultaneous start. See 2.1.1.2
Synchronization with external
trigger

E-Stop

/CEMG 2-23 Input U Negative Input for an emergency stop. While
this signal is LOW, motion cannot
start. If this signal changes to LOW
while in operation, all the motors
will stop operation immediately.

104 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Function
Signal
Name

Terminal
Number

Input/Output Logic Description

Limits

+Lx
+Ly
+Lz
+Lu

1-36
1-39
1-42
1-45

Input U Negative# Input end limit signal in the positive
(+) direction. When this signal is ON
while feeding in the positive (+)
direction, motion of an axis will
stop immediately or will decelerate
and stop.
The input logic can be selected
using software.

-Lx
-Ly
-Lz
-Lu

1-35
1-38
1-41
1-44

Input U Negative# Input end limit signal in the
negative (-) direction. When this
signal is ON while feeding in
negative (-) direction, motion of an
axis will stop immediately, or will
decelerate and stop.
The input logic can be selected
using software.

Slow Down

SDx
SDy
SDz
SDu

3-43
3-44
3-45
3-46

Input U Negative# Input for slowdown (deceleration
stop) signal. Selects the input
method: LEVEL or LATCHED inputs.
The input logic can be selected
using software.

Home

Hx
Hy
Hz
Hu

1-37
1-40
1-43
1-46

Input U Negative# Input home (origin position) signal.
Used for origin position operations
(edge detection).
The input logic can be selected
using software.

Feedback

Encoder

EAx, EBx
EAy, EBy
EAz, EBz
EAu, EBu

2-24, 2-24
2-27, 2-28
2-30, 2-31
2-33, 2-34

Input U Input this signal when you want to
control the mechanical position
using the encoder signal. Input a 90
phase difference signal (1x, 2x, 4x)
or input positive (+) pulses on EA
and negative (-) pulses on EB. (Two-
pulse input)
When inputting 90 phase
difference signals, if the EA signal
phase is ahead of the EB signal, the
motion core will count up (count
forward) pulses.
The counting direction can be
changed using software.

Index

EZx
EZy
EZz
EZy

2-26
2-29
2-32
2-35

Input U Negative# Input a index (marker) signal when
using the marker signal in origin
return mode. (This signal is output
once for each turn of the encoder.)
Use of the EZ signal improves origin
return precision.
The input logic can be changed
using software

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 105

Function
Signal
Name

Terminal
Number

Input/Output Logic Description

Input/Output

Digital I/O

DI1/LTCx
DI2/LTCy
DI3/LTCz
DI4/LTCu

1-31
1-32
1-33
1-34

Input U Negative# High-speed input. When Latch
function is enabled, will lock
encoder and pulse out count.
The input logic can be changed
using software.

D01/SYNCx
DO2/SYNCy
DO3/SYNCz
DO4/SYNCu

1-27
1-28
1-29
1-30

Output Positive High-speed output. When
synchronization function is
enabled, will output
synchronization based on
synchronization mode.
The input logic can be changed
using software.

IO1 to IO32 3-5 to 3-36 Input/Output General-purpose, configurable I/O

Analog

AI1
AI2

3-39
3-40

Input Analog input 10-bit 0-3.3V

PWM1
PWM2

3-41
3-42

Output PWM output

MPG

PAx, PBx
PAy, PBy
PAz, PBz
PAu, PBu

2-36, 2-37
2-38, 2-29
2-40, 2-41
2-42, 2-43

Input U Input for receiving external drive
pulses, such as manual pulse
generator. Input 90 phase
difference signals (1x, 2x, 4x) or
positive (+) pulses (on PA) and
negative (-) pulses (on PB). (Two-
pulse input)
When 90 phase difference signals
are used, if the signal phase of PA is
ahead of the PB signal, the
Commander will count up (count
forward) pulses.
The counting direction can be
changed using software.

Communication

USB

D+
D-
VBUS

2-4
2-3
2-5

Input/Output
Input/Output
Input

 USB D+
USB D-
USB sense input

RS485

/REDE
RxD
TxD

2-6
2-7
2-8

Output
Input
Output

 Receive/transmit signal for serial
communication
RXD signal for serial
communication
TXD signal for serial
communication

I2C
SDA0
SCL0

2-9
2-10

Input/Output
Output

 SDA [I2C Channel 0]
SCL [I2C Channel 0]

106 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Function
Signal
Name

Terminal
Number

Input/Output Logic Description

SPI

NSS0
MOSI0
MISO0
SCK0

2-12
2-12
2-14
2-15

 Secondary select [SPI Channel 0]
Main out, secondary in [SP!
Channel 0]
Main in, secondary out [SP!
Channel 0]
Serial clock [SP! Channel 0]

NSS1
MOSI1
MISO1
SCK1

2-18
2-19
2-20
2-21

 Secondary select [SPI Channel 1]
Main out, secondary in [SP!
Channel 1]
Main in, secondary out [SP!
Channel 1]
Serial clock [SP! Channel 1]

SD
SD_Write
SD_Detect

2-16
2-17

 These pins are reserved for future
firmware updates, please do not
connect these pins.

No Connection

N/C

1-47, 1-48
3-3, 3-4
3-47, 3-48

N/C These pins have no connections

Reserved
2-44 to
2-47, 3-37,
3-38

N/C These pins are reserved for future
firmware updates, please do not
connect these pins.

Note 1: "Input U" refers to an input with a pull up resistor. The internal pull up resistance (40 k to 240 k-ohms) is
only used to keep a terminal from floating. If you want to use the Commander core with an open collector
system, an external pull up resistor (5k to 10 k-ohms) is required.
As a noise prevention measure, pull up unused terminals to VDD using an external resistor (5 k to 10k-
ohms), or connect them directly to VDD5.

Note 2: "Input/Output *" refers to a terminal with a pull up resistor. The internal pull up resistor (40 k to 240 k-
ohms) is only used to keep a terminal from floating. If it is connected in a wired OR circuit, an external pull
up resistor (5 k to 10 k-ohms) is required.
As a noise prevention measure, pull up unused terminals to VDD using an external resistor (5 k to 10 k-
ohms).

Note 3: If an output terminal is not being used, leave it open.
Note 4: "Positive" refers to positive logic. "Negative" refers to negative logic. "#" means that the logic can be

changed using software. The logic shown refers only to the initial status of the terminal.
Note 5: Use the POL[axis] command to select an output signal.
Note 6: When a deceleration stop (Slow Down) is selected, keep the input signal ON until an axis stops.
Note 7: ORG input is synchronized with output pulses, sampled and controlled by a change of sampling result.

Therefore, keep ORG sensor ON for longer than feed amount for one pulse.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 107

6.1.1.3 Recommended Footprint

6.2.2 Interface Boards

Nippon Pulse provides off-the-shelf interface board designs specifically for the Commander core. These provide
quick and easy access to all the features and technology of the Commander core.

6.1.2.1 Development Kit

A development kit that includes a Commander core, an interface PCB, related cables, and software (via download)
is available. Every available feature and signal on the Commander core will be available through the development
kit (CMD-4CR-EV), which can function as the launchpad for your custom motion solution. Contact Nippon Pulse for
more information on the development kit.

108 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

7.0 Electrical Characteristics

7.1 Electrical and Thermal Specifications

Parameter Min Typ Max Units

Power

Main Power Input (VDD)
+3 +3.3 +3.6 V

 500 mA

VBUS (USB Sense) 0 +5 +5.8 V

I/O

Digital Outputs
0 VDD V

-6 6 mA

Digital Output High Voltage VDD - 0.6 VDD V

Digital Output Low Voltage 0 0.4 0.6 V

Digital Inputs
-0.3 VDD V

-90 30 uA

Digital Input High Voltage VDD - 0.6 5.8 V

Digital Input Low Voltage 0 0.6 V

Analog Inputs
0 VDD V

 1.5 mA

Analog Outputs
0 VDD V

 2.0 mA

Thermal

Operating Temperature -40 +85 °C

Storage Temperature -55 +150 °C

Flash Memory

Endurance (Write/Erase Cycles) 20K 100K Cycles

Retention (25°C, 1K Cycles) 10 100 Years

Table 7-44

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 109

7.2 Handling Precautions

7.2.1 Design precautions

1) Never exceed the absolute maximum ratings, even for a very short time.

2) Take precautions against the influence of heat in the environment keeping the temperature around the

Commander core as cool as possible.

3) Please note that ignoring the following may result in latching up and may cause overheating and smoke.

a. Do not apply a voltage greater than the absolute maximum rating voltage. Please consider the voltage

drop timing when turning the power ON/OFF.

b. Be careful not to introduce external noise into the Commander core.

c. Hold the unused input terminals to +3.3V or GND level.

d. Do not short-circuit the outputs.

e. Protect the LSI from inductive pulses caused by electrical sources that generate large voltage surges, and

take appropriate precautions against static electricity.

4) Provide external circuit protection components so that overvoltage caused by noise, voltage surges, or static

electricity are not fed to the Commander core.

7.2.2 Precautions for transporting and storing Commander cores

1) Always handle carefully and keep in their packages. Throwing or dropping may damage them.

2) Do not store in a location exposed to water droplets or direct sunlight.

3) Do not store in a location where corrosive gases are present, or in excessively dusty environments.

4) Store in an anti-static storage container, and make sure that no physical load is placed on the Commander

cores.

110 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

7.2.3 Precautions for installation

1) In order to prevent damage caused by static electricity, pay attention to the following.

a. Make sure to ground all equipment, tools, and jigs that are present at the work site.

b. Ground the work desk surface using a conductive mat or similar apparatus (with an appropriate resistance

factor). However, do not allow work on a metal surface, which can cause a rapid change in the electrical

charge due to extremely low resistance.

c. When using a vacuum device, provide anti-static protection using a conductive rubber pickup tip.

Anything which contacts the leads should have as high a resistance as possible.

d. When using a pincer that may make contact with any terminals, use an anti-static model. Do not use a

metal pincer, if possible.

e. Store unused commander cores in a PC board storage box that is protected against static electricity, and

make sure there is adequate clearance between the Commander cores. Never directly stack them on each

other, as it may cause friction that can develop an electrical charge.

2) Operators must wear wrist straps which are grounded through approximately 1M-ohm of resistance.

3) Use low voltage soldering devices and make sure the tips are grounded.

4) Do not store or use Commander cores near high-voltage electrical fields, such those produced by a CRT.

5) Please avoid soldering in a soaking method not so as to give a dramatic change of temperature to a package

and change and not so as to damage to a device.

7.2.4 Other precautions

1) The package is made of fire-retardant material; however, it can burn. When baked or burned, it may generate

gases or fire. Do not use it near ignition sources or flammable objects.

2) This Commander core is designed for use in commercial apparatus (office machines, communication

equipment, measuring equipment, and household appliances). If you use it in any device that may require high

quality and reliability, or where faults or malfunctions may directly affect human survival or injure humans,

such as in nuclear power control devices, aviation devices or spacecraft, traffic signals, fire control, or various

types of safety devices, we will not be liable for any problem that occurs, even if it was directly caused by the

Commander core. Customers must provide their own safety measures to ensure appropriate performance in

all circumstances.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 111

Appendix A: Homing Mode Actions
Commander core utilizes 13 homing search methods, utilizing home limit, end of travel limit, or Z-index pulse, or
combinations of these to complete a homing operation. Homing is used to establish a zero, or home, position to
use as a reference for absolute motion actions. Some homing methods will stop in a non-zero position, using the
position at which the home, end of travel, or Z-index pulse was triggered as the zero-reference position.

The chart below indicates which type of limits are used in each mode, along with home approach speed and
direction and end-point status. ● indicates input required, ○ indicates input optional.

Homing
Mode

Home
End

Limits
Z-index

Slow
Down

Approaches Home at
Direction to
Trigger Zero

Ending Point High
Speed

Low
Speed

Mode 0 ● ○ H Dir of Home Non-Zero

Mode 1 ● ○ L Dir of Home Zero

Mode 2 ● ● ○ L Dir of Home Zero

Mode 3 ● ● ○ H Dir of Home Non-Zero

Mode 4 ● ● ○ L Reverse Dir Zero

Mode 5 ● ● ○ H Reverse Dir Non-Zero

Mode 6 ● ○ H Reverse Dir Zero

Mode 7 ● ● ○ L Reverse Dir Zero

Mode 8 ● ● ○ H Reverse Dir Non-Zero

Mode 9 ● ○ H Reverse Dir Zero

Mode 10 ● ● ○ H Reverse Dir Zero

Mode 11 ● ● ○ H Dir of Home Zero

Mode 12 ● ● ○ H Dir of Home Zero

Table A-45 Homing inputs

Consider the system mechanics carefully when setting up limit switches, using precaution to set the limits for the
appropriate axis movement and consider the deceleration distance when establishing end of travel limits relative
to the hard stop positions.

NOTE: For homing modes 9 – 12, encoder feedback is required. When using a stepper motor and homing with
modes 9 – 12, an encoder is required and the command pulse count and encoder pulse count must be equal.

112 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

A.1 Homing Mode 0

Homing mode 0 with Slow Down (SD) disabled. This homing method works with a home limit switch input and sets
home when the motion stops after the home limit switch is encountered.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 0 ● ○ H Dir of Home Non-Zero

Operation 1:

A) Homing is started toward home switch, accelerate from LSPD to HSPD.

B) Deceleration starts when the home (ORG) input point is detected, zero position is set.

C) Homing is complete when deceleration stops.

D) ERC pulse is sent.

Operation 2:

A) Homing is started while home input is activated.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

Operation 3:

A) Homing is started moving away from the home input switch.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 113

Homing mode 0 with Slow Down (SD) enabled. In this homing mode, an input will first trigger a deceleration to a
lower speed point and then stops and sets home as the home limit switch is reached.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 0 ● ● L Dir of Home Non-Zero

Operation 1:

A) Homing is started toward home switch, accelerate from LSPD to HSPD.

B) Deceleration starts to LSPD when the SD input point is detected, continue towards home.

C) Stop when home input is detected, homing complete.

D) ERC pulse is sent.

Operation 2:

A) Homing is started while SD input is activated.

B) Continue traveling at LSPD towards home input.

C) Stop when home input is detected, zero position is set, homing complete.

D) ERC pulse is sent.

Operation 3:

D) Homing is started while SD input is activated and is moving away from the home input switch.

E) Travel at LSPD until SD input is deactivated, then accelerate from LSPD to HSPD.

F) End limit is encountered, immediate stop.

Operation 4:

A) Homing is started moving away from the home input switch and SD limit is deactivated.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

114 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

A.2 Homing Mode 1

This homing method decelerates when it first encounters the home limit switch, reverses direction to back off the
limit switch, and then approaches the home limit switch again at a lower speed point and sets home when the
home limit switch is encountered a second time.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 1 ● ○ L Dir of Home Zero

Operation 1:

A) Homing operation is started, accelerate from LSPD to HSPD.

B) Deceleration starts when home limit is encountered.

C) Reverse direction at move at LSPD towards home limit.

D) Move at LSPD until home limit is turned off and reverse direction.

E) Operation stops when home limit is encountered again, zero position is set.

F) ERC pulse is sent.

Operation 2:

A) Homing is started while home input is activated.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

Operation 3:

A) Homing is started moving away from the home input switch.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 115

A.3 Homing Mode 2

Homing method 2 utilizes both a home limit switch and the Z-index pulse of the encoder. Once the home limit
switch is encountered, the motor slows to a lower speed point and sets home as it encounters the Z-index pulse.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 2 ● ● ○ L Dir of Home Zero

Operation 1:

A) Homing operation is started, accelerate from LSPD to HSPD.

B) Deceleration starts when home limit is encountered.

C) Continue moving at LSPD until specified number of Z-Index pulses are counted (ZCNT), zero position is set.

D) Operation stops and is completed.

E) ERC pulse is sent.

Operation 2:

A) Homing is started while home input is activated.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

Operation 3:

A) Homing is started moving away from the home input switch.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

116 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

A.4 Homing Mode 3

Homing mode 3 uses both the home limit switch and Z-index pulse. The deceleration to the home set point occurs
after the move passes through the home limit switch and encounters the Z-index pulse.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 3 ● ● ○ H Dir of Home Non-Zero

Operation 1:

A) Homing operation is started, accelerate from LSPD to HSPD.

B) Continue moving at HSPD after home limit is encountered.

C) Decelerate when specified number of Z-Index pulses are counted (ZCNT), zero position is set.

D) Operation decelerates and stops.

E) ERC pulse is sent.

Operation 2:

A) Homing is started while home input is activated.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

Operation 3:

A) Homing is started moving away from the home input switch.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 117

A.5 Homing Mode 4

For homing mode 4, the motor decelerates upon reaching the home limit switch and reverses direction upon
reaching the lower speed point. Home is set when the Z-index pulse is encountered.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 4 ● ● ○ L Reverse Dir Zero

Operation 1:

A) Homing operation is started, accelerate from LSPD to HSPD.

B) Begin deceleration after home limit is encountered.

C) Reverse direction at LSPD after deceleration complete.

D) Continue moving at LSPD until specified number of Z-Index pulses are counted (ZCNT).

E) Operation stops and is completed; zero position is set.

F) ERC pulse is sent.

Operation 2:

D) Homing is started while home input is activated.

E) Acceleration from LSPD to HSPD.

F) End limit is encountered, immediate stop.

Operation 3:

D) Homing is started moving away from the home input switch.

E) Acceleration from LSPD to HSPD.

F) End limit is encountered, immediate stop.

118 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

A.6 Homing Mode 5

In homing mode 5, the home limit switch initiates a full reversal from top speed in the initial direction to top speed
in the reverse direction. Homing is completed when the Z-index pulse is encountered and the motion comes to a
stop.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 6 ● ○ H Reverse Dir Zero

Operation 1:

A) Homing operation is started, accelerate from LSPD to HSPD.

B) Begin deceleration to LSPD after home limit is encountered.

C) Reverse direction and accelerate to HSPD.

D) Continue moving at HSPD until specified number of Z-Index pulses are counted (ZCNT), zero position is

set.

E) Operation decelerates, stops and is completed.

F) ERC pulse is sent.

Operation 2:

A) Homing is started while home input is activated.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

Operation 3:

A) Homing is started moving away from the home input switch.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 119

A.7 Homing Mode 6

Homing mode 6 uses the end of travel limit switch to trigger home location. The end limit is encountered and the
motor reverses off the end of travel limit at a lower speed and sets home position.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 6 ● ○ H Reverse Dir Zero

Operation 1:

A) Homing operation is started, accelerate from LSPD to HSPD.

B) Immediate stop when the end of travel limit switch is encountered.

C) Reverse direction at LSPD until end limit switch turns off.

D) Operation stopped immediately and homing operation is completed, zero position is set.

E) ERC pulse is sent.

Note: When utilizing the end travel limits, the ERC command will clear the end-of-travel limit flag in the direction
of the home during the homing operation. Refer to ERC command in the Command Reference for further details.

120 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

A.8 Homing Mode 7

Homing mode 7 is similar to homing mode 6, except it reverses until it locates the Z-index pulse after encountering
the end of travel limit switch. Once the Z-index is reached, homing is completed.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 7 ● ● ○ L Reverse Dir Zero

Operation 1:

A) Homing operation is started, accelerate from LSPD to HSPD.

B) Immediate stop when the end of travel limit switch is encountered.

C) Reverse direction at LSPD until specified number of Z-Index pulses are counted (ZCNT).

D) Operation stopped immediately and homing operation is completed, zero position is set.

E) ERC pulse is sent.

Note: When utilizing the end travel limits, the ERC command will clear the end-of-travel limit flag in the direction
of the home during the homing operation. Refer to ERC command in the Command Reference for further details.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 121

A.9 Homing Mode 8

In homing mode 8, the end of travel limit switch triggers an immediate stop and then full reversal at top speed
until Z-index is encountered and zero position is set. At this point the motor decelerates and stops.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 8 ● ● ○ H Reverse Dir Non-Zero

Operation 1:

A) Homing operation is started, accelerate from LSPD to HSPD.

B) Immediate stop when the end of travel limit switch is encountered.

C) Reverse direction accelerating from LSPD to HSPD and move until specified number of Z-Index pulses are

counted (ZCNT).

D) As the specified number of Z-index pulses is encountered, zero position is set and deceleration to LSPD

begins.

E) Homing operation is completed by deceleration and stop.

F) ERC pulse is sent.

Note: When utilizing the end travel limits, the ERC command will clear the end-of-travel limit flag in the direction
of the home during the homing operation. Refer to ERC command in the Command Reference for further details.

122 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

A.10 Homing Mode 9

Homing Mode 9 uses the home limit switch to initiate a deceleration, then continues with a quick index back to the
position where the home limit was encountered.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 9 ● ○ H Reverse Dir Zero

Operation 1:

A) Homing operation is started, accelerate from LSPD to HSPD.

B) Deceleration begins as the home limit switch is encountered and zero position is set.

C) Begin zero-point return operation back to home position at the end of deceleration, accelerate from LSPD

to HSPD.

D) Homing operation is completed when the 0 position is reached.

E) ERC pulse is sent.

Operation 2:

A) Homing is started while home input is activated.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

Operation 3:

A) Homing is started moving away from the home input switch.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

NOTE: For homing modes 9 – 12, encoder feedback is required. When using a stepper motor and homing with
modes 9 – 12, an encoder is required and the command pulse count and encoder pulse count must be equal.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 123

A.11 Homing Mode 10

Homing mode 10 is similar to homing mode 3 as it uses both the home limit switch and Z-index pulse. Deceleration
occurs after the move passes through the home limit switch and encounters the Z-index pulse. The operation
continues with a quick index back to the position where the Z-index pulse was encountered.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 10 ● ● ○ H Reverse Dir Zero

Operation 1:

A) Homing operation is started, accelerate from LSPD to HSPD.

B) Continue moving at HSPD as the home limit switch is encountered.

C) Deceleration begins when specified number of Z-indexpulses is encountered (ZCNT), zero set.

D) At end of deceleration, a zero-point return operation begins to the position where Z-index pulse was

encountered, accelerating from LSPD to HSPD and decelerating and stopping at 0 position.

E) Homing is completed when the 0 position is reached.

F) ERC pulse is sent.

Operation 2:

A) Homing is started while home input is activated.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

Operation 3:

A) Homing is started moving away from the home input switch.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

NOTE: For homing modes 9 – 12, encoder feedback is required. When using a stepper motor and homing with
modes 9 – 12, an encoder is required and the command pulse count and encoder pulse count must be equal.

124 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

A.12 Homing Mode 11

In homing mode 11, the home limit switch is used to initiate a deceleration. The operation then continues with a
fast move in the reverse direction until the Z-index pulse is encountered, where a quick index reverses motion back
to the position where the Z-index pulse was encountered.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 11 ● ● ○ H Dir of Home Zero

Operation 1:

A) Homing operation is started, accelerate from LSPD to HSPD, then decelerate as the home limit switch is

encountered.

B) Reverse direction, accelerating from LSPD to HSPD, then decelerate when specified number of Z-

indexpulses is encountered (ZCNT), zero position is set.

C) Start a zero-point return move to the position where the Z-index pulse was encountered, accelerating

from LSPD to HSPD then decelerating and stopping at 0 position.

D) ERC pulse is sent.

Operation 2:

A) Homing is started while home input is activated.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

Operation 3:

A) Homing is started moving away from the home input switch.

B) Acceleration from LSPD to HSPD.

C) End limit is encountered, immediate stop.

NOTE: For homing modes 9 – 12, encoder feedback is required. When using a stepper motor and
homing with modes 9 – 12, an encoder is required and the command pulse count and encoder pulse
count must be equal.

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 125

A.13 Homing Mode 12

Homing mode 12 is similar to homing mode 11, except it utilizes the end of travel limit to initiate an immediate
stop before it makes a fast move back to the Z-index pulse, where a quick index reverses motion back to the
position where the Z-index pulse was encountered.

Homing
Mode

Home
Limit

End
Limits

Z-index
Slow

Down

Approaches Home at
Direction to
Trigger Zero

Ending
Point High

Speed
Low

Speed

Mode 12 ● ● ○ H Dir of Home Zero

Operation 1:

A) Homing operation is started, accelerate from LSPD to HSPD.

B) Immediate stop on encountering end of travel limit switch.

C) Reverse direction, accelerating from LSPD to HSPD.

D) Deceleration begins when specified number of Z-indexpulses is encountered (ZCNT), zero position is set.

E) Start a zero-point return move to the position where the Z-index pulse was encountered, accelerating

from LSPD to HSPD then decelerating and stopping at 0 position.

F) Homing is completed when the 0 position is reached.

G) ERC pulse is sent.

NOTE: For homing modes 9 – 12, encoder feedback is required. When using a stepper motor and homing with
modes 9 – 12, an encoder is required and the command pulse count and encoder pulse count must be equal.

More information on the homing modes can be found in Section 9-5-1 of the PCL6045BL users manual.

126 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Appendix B: Speed Settings

HSPD value [PPS] †
Speed Window

[SSPDM]
Min. LSPD

value
Min. ACC

[ms]
δ Max ACC setting [ms]

1 - 65K 0, 1 1 2 50 ((HSPD – LSPD) / δ) × 1000

65K - 130K 2 2 1 100

130K - 325K 3 5 1 200

325K - 650 K 4 10 1 800

650K - 1.3M 5 20 1 1500

1.3M - 3.2M 6 50 1 3800

3.2M – 6.55M 7 100 1 7500

Table B-46 Speed settings

†If StepNLoop is enabled, the HSPD range values need to be transposed from PPS (pulse/sec) to EPS (encoder

counts/sec) using the following formula: EPS = PPS / Step-N-Loop Ratio

B.1 Acceleration/Deceleration Range

The allowable acceleration/deceleration values depend on the LS and HS settings. The minimum accel/decel
setting for a given high speed and low speed is shown in the table above. The maximum accel/decel setting for a
given high speed and low speed can be calculated using the formula:

Max ACC = ((HS – LS) / δ) × 1000 [ms]

Note: The ACC parameter will be automatically adjusted if the value exceeds the allowable HSPD value range

Examples:

a) If HSPD = 20,000 pps, LSPD = 10,000 pps:

a. Min acceleration allowable: 1 ms

b. Max acceleration allowable: ((20,000 – 10000) / 50) x 1,000 ms = 200,000 ms (200 sec)

b) If HSPD = 900,000 pps, LSPD = 9,000 pps:

a. Min acceleration allowable: 1 ms

b. Max acceleration allowable: ((900,000 – 9,000) / 1500) x 1000 ms = 594,000 ms (594 sec)

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 127

B.2 Acceleration/Deceleration Range – Positional Move

When dealing with positional moves, the controller automatically calculates the appropriate acceleration and
deceleration based on the following rules.

Figure B-44

1) ACC vs. DEC 1: If the theoretical position where the controller begins deceleration is less than L/2, the

acceleration value is used for both ramp up and ramp down. This is regardless of the EDEC setting.

2) ACC vs. DEC 2: If the theoretical position where the controller begins constant speed is greater than L/2,

the acceleration value is used for both ramp up and ramp down. This is regardless of the EDEC setting.

3) Triangle Profile: If either (1) or (2) occur, the velocity profile becomes triangle. Maximum speed is

reached at L/2.

128 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Appendix C - Interpolation
Interpolation consists of generating data points between given coordinate axis positions and using this data to
generate a path in space (linear, arc, circle, or helix) related to the coordinated axes. With linear interpolation,
these points establish a straight-line path through space of the associated axes. With Commander, an interpolator
causes the axes to move simultaneously from the start to the end of the command. The interpolator calculates
individual axis velocities to drive the axes along the desired path at the given feed rate. Thousands of intermediate
coordinate points along the path are calculated between the start point and the end point of the move.
Commander core utilizes linear interpolation (linear interpolation between two to four axes), arc and circular
Interpolation with any two axes, and helix Interpolation with X, Y and Z axes (arc and circle (X, Y) in combination
with linear interpolation (Z-axis)). Interpolation operation can be executed up to the maximum pulse frequency.

C.1 Linear Interpolation

To execute a linear interpolated move, specify the endpoint
coordinates and the desired linear interpolation operation.
The endpoint is specified as an incremental number of pulses
from the current position on each axis, or the desired
absolute position coordinates. Commander automatically
identifies the axis with the larger feed distance as the main
axis, and the other axes as the secondary axes. The main axis
is supplied a pulse rate tied to the specified feed rate while
the secondary axes are supplied with a reduced pulse rate
based on the interpolation calculations. Figure C-45 shows a
two-axis linear interpolation with endpoint coordinates of
(10, 4) using the X and Y axes. See the PCL6045BL manual
section 9.8.5, pg. 84 for more information.

C.3 Arc Interpolation

Executing an arc interpolation from the current position as the
starting point requires the center coordinates and endpoint of
the arc in degrees. Select either a CW or CCW arc interpolation
direction and enter the arc center coordinates (incremental or
absolute) and arc travel endpoint in degrees. The CW arc
interpolation draws an arc from the current coordinates to the
endpoint coordinates in a clockwise direction, using the center
coordinates as the arc center. The CCW arc interpolation
draws an arc in a counterclockwise direction. Figure C-46 is an
example of drawing an arc with the X and Y axes in a CW arc
interpolation operation. See the PCL6045BL manual section
9.8.8, pg. 87 for more information.

C.4 Circular Interpolation

Executing circular interpolation from the current position as
the starting point requires the center coordinates of the circle.
Select either a CW or CCW circular interpolation direction and

Figure C-45

Figure C-46

 C o m m a n d e r c o r e C M D - 4 C R V 1 . 0 P a g e | 129

enter the circle center coordinates (incremental or absolute).
The circular interpolation function draws a circle from the
current position to the end coordinate, moving CW or CCW.
The positional deviation from the specified curve is ±0.5 LSB.
Figure C-47 on the right is an example of how a simple circle
with a radius of 11 units is created. The LSB corresponds to
the resolution of the mechanical system (size of the cells in
the figure).

C.5 Circular Interpolation Synchronized with the

U-axis

The commander core allows a combination of circular or arc
interpolation of X and Y axes with linear interpolation of the Z-
axis to provide a helical path of motion. The U-axis is used in
the background as a virtual axis to aid in the performance of
this function. This feature is used in applications that may
require circular interpolation between X and Y axes and to adjust the angle of a jig toward an arc tangent point
with the Z-axis. Since the U-axis plays a role in these moves, it cannot be used for any other purposes.

C.6 Additional notes regarding Interpolation functions

Acceleration/deceleration operations

Acceleration and deceleration (linear and S-curve) can be used with linear, arc, and circular interpolation
operations.

Error stop

If any of the axes performing interpolated movements stops with an error, all of the axes performing interpolation
will stop.

SD input

When SD input is enabled and turns ON for any axis during an interpolation operation, all axes will decelerate or
decelerate and stop.

Idling control

If any axis is in idling range, none of the axes performing interpolation will accelerate.

Correction function

When a direction is changed by switching of quadrants during circular interpolation, backlash correction and slip
correction control cannot be used.

Figure C-47

Figure C-48

130 | P a g e C o m m a n d e r c o r e C M D - 4 C R V 1 . 0

Nippon Pulse America, Inc.
4 Corporate Drive Street, Radford, VA 24141 USA
Phone: 1-540-633-1677
E-mail: info@nipponpulse.com
Web: http://www. nipponpulse.com

 Commander Core CMD-4CR Version 1.0

 10/22/2019
 P:\Temporary\CMD Manual\CMD-4CR Product manual\V1.0\Commander Manual V1.0.docx

	1.0 Introduction and Overview
	1.1 Product Overview
	1.2 Specifications

	2.0 Operating principle
	2.1 General Connections and Setup
	2.1.1 Connecting multiple Commander cores in a system
	2.1.1.1 Identification Number
	2.1.1.2 Synchronization with external trigger

	2.1.2 Motor interface
	2.1.2.1 Stepper
	2.1.2.2 Digital Servo
	2.1.2.3 Encoder Inputs

	2.1.3 External Connections
	2.1.3.1 Dedicated Input/Outputs
	2.1.3.1.1 Mechanical input signals
	2.1.3.1.1.1 Limit Switches
	2.1.3.1.1.2 Slowdown switches
	2.1.3.1.1.3 Home switch

	2.1.3.1.2 Emergency stop
	2.1.3.1.3 External Start
	2.1.3.1.4 Manual pulse generator (MPG) inputs

	2.1.3.2 High-speed Inputs/Outputs
	2.1.3.2.1 High-Speed Digital Inputs
	2.1.3.2.2 High-Speed Digital Output

	2.1.3.3 General-purpose input/output
	2.1.3.3.1 Configurable Digital I/O
	2.1.3.3.2 Analog Input/output
	2.1.3.3.3 Pulse-width modulated Outputs.

	2.1.4 Motion Profile
	2.1.5 Power-on settings
	2.1.6 System settings
	2.1.6.1 ERC (deflection counter clear)
	2.1.6.2 INP (in-position)
	2.1.6.3 Input modes and the polarity of the input/output logic

	2.1.7 Flash Memory

	2.2 Single-axis and Multi-axis operations
	2.2.1 Motor Power
	2.2.2 Jog operation
	2.2.3 Stopping
	2.2.4 Positioning operation
	2.2.4.1 Absolute or Incremental
	2.2.4.2 Individual Position Moves

	2.2.5 Homing operation
	2.2.5.1 Z-move Operation

	2.3 Interpolation Operation
	2.3.1 Linear interpolation
	2.3.2 Circular interpolation
	2.3.2.1 Arc interpolation

	2.3.3 Helical or Tangential interpolation
	2.3.4 Buffered interpolation operation

	2.4 On-the-fly-speed/target position change
	2.4.1 On-the-fly speed change
	2.4.2 On-the-fly target position change (Target position change)

	2.5 Advanced Functions
	2.5.1 Joystick operation
	2.5.1.1 Direction control
	2.5.1.2 Speed control
	2.5.1.3 Position control

	2.5.2 Manual pulse generator (MPG) operation
	2.5.2.1 MPG signal input mode
	2.5.2.2 Electronic gearing the MPG signal

	2.5.3 StepNLoop Closed Loop Control operation

	2.6 Status monitoring function
	2.6.1 Counter values
	2.6.1.1 Output Pulse Counter
	2.6.1.2 Feedback Pulse Counter
	2.6.1.3 Deviation Counter

	2.6.2 Axis status register
	2.6.2.1 Axis Status Acquisition Command
	2.6.2.2 Pulse Speed register
	2.6.2.3 Error clear command

	2.7 Standalone program Specification
	2.7.1 Program Development
	2.7.2 Conditional loop control
	2.7.3 Multi-thread
	2.7.4 Subroutines
	2.7.5 Error Handling
	2.7.6 Standalone Variables
	2.7.7 Compiling, Saving, Downloading
	2.7.8 Standalone Control
	2.7.9 Standalone Status
	2.7.10 Standalone Run on Boot-Up

	3.0 Communication Interface
	3.1 USB Communication
	3.1.1 Typical USB Setup
	3.1.2 HID Communication API
	3.1.2.1 How to use
	3.1.2.2 GetCommanderHIDnumber
	3.1.2.3 GetCommanderHIDName
	3.1.2.4 OpenCommanderHID
	3.1.2.5 CloseCommanderHID
	3.1.2.6 SendReceiveCommanderHID
	3.1.2.7 Communication Error Codes

	3.2 Serial Communication
	3.2.1 Communication Port Settings
	3.2.2 ASCII Protocol

	3.3 Identification Number
	3.4 Windows GUI

	4.0 ASCII Language Specification
	4.1 ASCII Command Set
	4.2 Error Codes
	4.3 Examples of command control from a PC
	4.3.1 Start and stop of jog move
	4.3.2 Position Move
	4.3.3 Obtaining and clearing the counter value
	4.3.4 Homing Operation
	4.3.5 Linear interpolation operation
	4.3.6 Circular Interpolation Operation
	4.3.7 On-the-fly speed change
	4.3.8 Synchronization Function
	4.3.9 Control of general purpose input/output

	5.0 Standalone Language Specification
	5.1 Using A-Script programming interface
	5.1.1 Program Development
	5.1.2 Subroutines
	5.1.3 Error Handling
	5.1.4 Multi-thread
	5.1.5 Compiling, Saving, Downloading

	5.2 Standalone Command Set
	5.3 Error Codes
	5.4 Example Standalone Programs
	5.4.1 Standalone Example Program 1 – Single Thread
	5.4.2 Standalone Example Program 2 – Single Thread with buffer
	5.4.3 Standalone Example Program 3 – Single Thread
	5.4.4 Standalone Example Program 4 – Single Thread
	5.4.5 Standalone Example Program 5 – Single Thread
	5.4.6 Standalone Example Program 6 – Single Thread with subroutine
	5.4.7 Standalone Example Program 7 – Single Thread with error handling
	5.4.8 Standalone Example Program 8 – Multi-thread
	5.4.9 Standalone Example Program 9 – Multi-thread with subroutine
	5.4.10 Standalone Example Program 10 – Multi-thread with subroutine

	6.0 Dimensions and Connectivity
	6.1 Dimensions
	6.2 Connectivity
	6.2.1 Pinout
	6.1.1.1 Pin Assignment Diagram
	6.1.1.2 Pin Descriptions by Functions
	6.1.1.3 Recommended Footprint

	6.2.2 Interface Boards
	6.1.2.1 Development Kit

	7.0 Electrical Characteristics
	7.1 Electrical and Thermal Specifications
	7.2 Handling Precautions
	7.2.1 Design precautions
	7.2.2 Precautions for transporting and storing Commander cores
	7.2.3 Precautions for installation
	7.2.4 Other precautions

	Appendix A: Homing Mode Actions
	A.1 Homing Mode 0
	A.2 Homing Mode 1
	A.3 Homing Mode 2
	A.4 Homing Mode 3
	A.5 Homing Mode 4
	A.6 Homing Mode 5
	A.7 Homing Mode 6
	A.8 Homing Mode 7
	A.9 Homing Mode 8
	A.10 Homing Mode 9
	A.11 Homing Mode 10
	A.12 Homing Mode 11
	A.13 Homing Mode 12

	Appendix B: Speed Settings
	B.1 Acceleration/Deceleration Range
	B.2 Acceleration/Deceleration Range – Positional Move

	Appendix C - Interpolation
	C.1 Linear Interpolation
	C.3 Arc Interpolation
	C.4 Circular Interpolation
	C.5 Circular Interpolation Synchronized with the U-axis
	C.6 Additional notes regarding Interpolation functions

